New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > andi | GIF version |
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
andi | ⊢ ((φ ∧ (ψ ∨ χ)) ↔ ((φ ∧ ψ) ∨ (φ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 374 | . . 3 ⊢ ((φ ∧ ψ) → ((φ ∧ ψ) ∨ (φ ∧ χ))) | |
2 | olc 373 | . . 3 ⊢ ((φ ∧ χ) → ((φ ∧ ψ) ∨ (φ ∧ χ))) | |
3 | 1, 2 | jaodan 760 | . 2 ⊢ ((φ ∧ (ψ ∨ χ)) → ((φ ∧ ψ) ∨ (φ ∧ χ))) |
4 | orc 374 | . . . 4 ⊢ (ψ → (ψ ∨ χ)) | |
5 | 4 | anim2i 552 | . . 3 ⊢ ((φ ∧ ψ) → (φ ∧ (ψ ∨ χ))) |
6 | olc 373 | . . . 4 ⊢ (χ → (ψ ∨ χ)) | |
7 | 6 | anim2i 552 | . . 3 ⊢ ((φ ∧ χ) → (φ ∧ (ψ ∨ χ))) |
8 | 5, 7 | jaoi 368 | . 2 ⊢ (((φ ∧ ψ) ∨ (φ ∧ χ)) → (φ ∧ (ψ ∨ χ))) |
9 | 3, 8 | impbii 180 | 1 ⊢ ((φ ∧ (ψ ∨ χ)) ↔ ((φ ∧ ψ) ∨ (φ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: andir 838 anddi 840 indi 3502 indifdir 3512 unrab 3527 unipr 3906 uniun 3911 unopab 4639 xpundi 4833 coundir 5084 imadif 5172 unpreima 5409 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |