NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jcai GIF version

Theorem jcai 522
Description: Deduction replacing implication with conjunction. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
jcai.1 (φψ)
jcai.2 (φ → (ψχ))
Assertion
Ref Expression
jcai (φ → (ψ χ))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (φψ)
2 jcai.2 . . 3 (φ → (ψχ))
31, 2mpd 14 . 2 (φχ)
41, 3jca 518 1 (φ → (ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  reu6  3026  opkthg  4132  f1o2d  5728  enprmaplem5  6081  nchoicelem17  6306
  Copyright terms: Public domain W3C validator