| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > jctil | GIF version | ||
| Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| jctil.1 | ⊢ (φ → ψ) |
| jctil.2 | ⊢ χ |
| Ref | Expression |
|---|---|
| jctil | ⊢ (φ → (χ ∧ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.2 | . . 3 ⊢ χ | |
| 2 | 1 | a1i 10 | . 2 ⊢ (φ → χ) |
| 3 | jctil.1 | . 2 ⊢ (φ → ψ) | |
| 4 | 2, 3 | jca 518 | 1 ⊢ (φ → (χ ∧ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: jctl 525 nic-ax 1438 nic-axALT 1439 unidif 3924 iunxdif2 4015 sbthlem1 6204 |
| Copyright terms: Public domain | W3C validator |