NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jctil GIF version

Theorem jctil 523
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (φψ)
jctil.2 χ
Assertion
Ref Expression
jctil (φ → (χ ψ))

Proof of Theorem jctil
StepHypRef Expression
1 jctil.2 . . 3 χ
21a1i 10 . 2 (φχ)
3 jctil.1 . 2 (φψ)
42, 3jca 518 1 (φ → (χ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  jctl  525  nic-ax  1438  nic-axALT  1439  unidif  3924  iunxdif2  4015  sbthlem1  6204
  Copyright terms: Public domain W3C validator