Step | Hyp | Ref
| Expression |
1 | | finnc 6244 |
. . 3
⊢ (( Spac ‘M) ∈ Fin ↔ Nc ( Spac ‘M) ∈ Nn ) |
2 | | risset 2662 |
. . . 4
⊢ ( Nc ( Spac
‘M) ∈ Nn ↔ ∃t ∈ Nn t = Nc ( Spac ‘M)) |
3 | | nchoicelem13 6302 |
. . . . . . 7
⊢ (M ∈ NC → 1c ≤c Nc ( Spac
‘M)) |
4 | 3 | ad2antlr 707 |
. . . . . 6
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → 1c ≤c Nc ( Spac
‘M)) |
5 | | 1cnc 6140 |
. . . . . . . 8
⊢
1c ∈ NC |
6 | | fvex 5340 |
. . . . . . . . 9
⊢ ( Spac ‘M) ∈
V |
7 | 6 | ncelncsi 6122 |
. . . . . . . 8
⊢ Nc ( Spac
‘M) ∈ NC |
8 | | dflec2 6211 |
. . . . . . . 8
⊢
((1c ∈ NC ∧ Nc ( Spac
‘M) ∈ NC ) →
(1c ≤c Nc ( Spac ‘M) ↔ ∃x ∈ NC Nc ( Spac
‘M) = (1c
+c x))) |
9 | 5, 7, 8 | mp2an 653 |
. . . . . . 7
⊢
(1c ≤c Nc (
Spac ‘M) ↔ ∃x ∈ NC Nc ( Spac
‘M) = (1c
+c x)) |
10 | | eqtr 2370 |
. . . . . . . . . . . 12
⊢ ((t = Nc ( Spac ‘M) ∧ Nc ( Spac
‘M) = (1c
+c x)) → t = (1c +c
x)) |
11 | 10 | ancoms 439 |
. . . . . . . . . . 11
⊢ (( Nc ( Spac
‘M) = (1c
+c x) ∧ t = Nc ( Spac
‘M)) → t = (1c +c
x)) |
12 | | eqtr2 2371 |
. . . . . . . . . . . . 13
⊢ ((t = Nc ( Spac ‘M) ∧ t = (1c +c
x)) → Nc
( Spac ‘M) = (1c +c
x)) |
13 | 12 | ex 423 |
. . . . . . . . . . . 12
⊢ (t = Nc ( Spac ‘M) → (t =
(1c +c x) → Nc ( Spac ‘M) = (1c +c
x))) |
14 | 13 | adantl 452 |
. . . . . . . . . . 11
⊢ (( Nc ( Spac
‘M) = (1c
+c x) ∧ t = Nc ( Spac
‘M)) → (t = (1c +c
x) → Nc (
Spac ‘M) = (1c +c
x))) |
15 | 11, 14 | jcai 522 |
. . . . . . . . . 10
⊢ (( Nc ( Spac
‘M) = (1c
+c x) ∧ t = Nc ( Spac
‘M)) → (t = (1c +c
x) ∧ Nc ( Spac
‘M) = (1c
+c x))) |
16 | | addceq2 4385 |
. . . . . . . . . . . . . . . . . 18
⊢ (k = 1c → (x +c k) = (x
+c 1c)) |
17 | | addccom 4407 |
. . . . . . . . . . . . . . . . . 18
⊢ (x +c 1c) =
(1c +c x) |
18 | 16, 17 | syl6eq 2401 |
. . . . . . . . . . . . . . . . 17
⊢ (k = 1c → (x +c k) = (1c +c
x)) |
19 | 18 | eqeq2d 2364 |
. . . . . . . . . . . . . . . 16
⊢ (k = 1c → (t = (x
+c k) ↔ t = (1c +c
x))) |
20 | 19 | rspcev 2956 |
. . . . . . . . . . . . . . 15
⊢
((1c ∈ NC ∧ t = (1c +c
x)) → ∃k ∈ NC t = (x
+c k)) |
21 | 5, 20 | mpan 651 |
. . . . . . . . . . . . . 14
⊢ (t = (1c +c
x) → ∃k ∈ NC t = (x
+c k)) |
22 | | nnnc 6147 |
. . . . . . . . . . . . . . . 16
⊢ (t ∈ Nn → t ∈ NC
) |
23 | | dflec2 6211 |
. . . . . . . . . . . . . . . 16
⊢ ((x ∈ NC ∧ t ∈ NC ) → (x
≤c t ↔ ∃k ∈ NC t = (x
+c k))) |
24 | 22, 23 | sylan2 460 |
. . . . . . . . . . . . . . 15
⊢ ((x ∈ NC ∧ t ∈ Nn ) → (x
≤c t ↔ ∃k ∈ NC t = (x
+c k))) |
25 | 24 | ancoms 439 |
. . . . . . . . . . . . . 14
⊢ ((t ∈ Nn ∧ x ∈ NC ) → (x
≤c t ↔ ∃k ∈ NC t = (x
+c k))) |
26 | 21, 25 | syl5ibr 212 |
. . . . . . . . . . . . 13
⊢ ((t ∈ Nn ∧ x ∈ NC ) → (t =
(1c +c x) → x
≤c t)) |
27 | 26 | adantll 694 |
. . . . . . . . . . . 12
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (t =
(1c +c x) → x
≤c t)) |
28 | | nclenn 6250 |
. . . . . . . . . . . . . . 15
⊢ ((x ∈ NC ∧ t ∈ Nn ∧ x ≤c t) → x
∈ Nn
) |
29 | 28 | 3expia 1153 |
. . . . . . . . . . . . . 14
⊢ ((x ∈ NC ∧ t ∈ Nn ) → (x
≤c t → x ∈ Nn )) |
30 | 29 | ancoms 439 |
. . . . . . . . . . . . 13
⊢ ((t ∈ Nn ∧ x ∈ NC ) → (x
≤c t → x ∈ Nn )) |
31 | 30 | adantll 694 |
. . . . . . . . . . . 12
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (x
≤c t → x ∈ Nn )) |
32 | | nchoicelem16 6305 |
. . . . . . . . . . . . . . . . . 18
⊢ {t ∣ (
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))}
∈ V |
33 | | addceq2 4385 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (t = 0c →
(1c +c t) = (1c +c
0c)) |
34 | | addcid1 4406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(1c +c 0c) =
1c |
35 | 33, 34 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = 0c →
(1c +c t) = 1c) |
36 | 35 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = 0c → ( Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) =
1c)) |
37 | 36 | imbi1d 308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = 0c → (( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = 1c → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
38 | 37 | ralbidv 2635 |
. . . . . . . . . . . . . . . . . . 19
⊢ (t = 0c → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = 1c → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
39 | 38 | imbi2d 307 |
. . . . . . . . . . . . . . . . . 18
⊢ (t = 0c → (( ≤c
We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = 1c → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))))) |
40 | | addceq2 4385 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = n →
(1c +c t) = (1c +c
n)) |
41 | 40 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = n → (
Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) = (1c
+c n))) |
42 | 41 | imbi1d 308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = n → ((
Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
43 | 42 | ralbidv 2635 |
. . . . . . . . . . . . . . . . . . 19
⊢ (t = n →
(∀m
∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
44 | 43 | imbi2d 307 |
. . . . . . . . . . . . . . . . . 18
⊢ (t = n → ((
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))))) |
45 | | addceq2 4385 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (t = (n
+c 1c) → (1c
+c t) =
(1c +c (n +c
1c))) |
46 | 45 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = (n
+c 1c) → ( Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) = (1c
+c (n
+c 1c)))) |
47 | 46 | imbi1d 308 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = (n
+c 1c) → (( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc m) ∈ Fin ∧ ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)))))) |
48 | 47 | ralbidv 2635 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = (n
+c 1c) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc m) ∈ Fin ∧ ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)))))) |
49 | | fveq2 5329 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Spac ‘m) = ( Spac
‘k)) |
50 | 49 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = k →
Nc ( Spac
‘m) = Nc
( Spac ‘k)) |
51 | 50 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = k → (
Nc ( Spac
‘m) = (1c
+c (n
+c 1c)) ↔ Nc ( Spac
‘k) = (1c
+c (n
+c 1c)))) |
52 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k →
Tc m = Tc
k) |
53 | 52 | fveq2d 5333 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Spac ‘ Tc m) = (
Spac ‘ Tc k)) |
54 | 53 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = k → ((
Spac ‘ Tc m)
∈ Fin ↔ (
Spac ‘ Tc k)
∈ Fin
)) |
55 | 53 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k →
Nc ( Spac
‘ Tc m) = Nc ( Spac ‘ Tc k)) |
56 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ( Nc ( Spac
‘m) = Nc
( Spac ‘k) → Tc
Nc ( Spac
‘m) = Tc Nc ( Spac ‘k)) |
57 | 50, 56 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (m = k →
Tc Nc (
Spac ‘m) = Tc
Nc ( Spac
‘k)) |
58 | 57 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k → (
Tc Nc (
Spac ‘m) +c 1c) = (
Tc Nc (
Spac ‘k) +c
1c)) |
59 | 55, 58 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
1c))) |
60 | 57 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k → (
Tc Nc (
Spac ‘m) +c 2c) = (
Tc Nc (
Spac ‘k) +c
2c)) |
61 | 55, 60 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))) |
62 | 59, 61 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = k → ((
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) |
63 | 54, 62 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = k → (((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
64 | 51, 63 | imbi12d 311 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = k → ((
Nc ( Spac
‘m) = (1c
+c (n
+c 1c)) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c)))))) |
65 | 64 | cbvralv 2836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c (n
+c 1c)) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))) |
66 | 48, 65 | syl6bb 252 |
. . . . . . . . . . . . . . . . . . 19
⊢ (t = (n
+c 1c) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c)))))) |
67 | 66 | imbi2d 307 |
. . . . . . . . . . . . . . . . . 18
⊢ (t = (n
+c 1c) → (( ≤c We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) |
68 | | addceq2 4385 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = x →
(1c +c t) = (1c +c
x)) |
69 | 68 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = x → (
Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) = (1c
+c x))) |
70 | 69 | imbi1d 308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = x → ((
Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = (1c +c
x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
71 | 70 | ralbidv 2635 |
. . . . . . . . . . . . . . . . . . 19
⊢ (t = x →
(∀m
∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
72 | 71 | imbi2d 307 |
. . . . . . . . . . . . . . . . . 18
⊢ (t = x → ((
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))))) |
73 | | nchoicelem14 6303 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((m ∈ NC ∧ Nc ( Spac
‘m) = 1c) →
¬ (m ↑c
0c) ∈ NC ) |
74 | 73 | ex 423 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m ∈ NC → ( Nc ( Spac ‘m) = 1c → ¬ (m ↑c 0c)
∈ NC
)) |
75 | 74 | adantl 452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (( ≤c
We NC ∧ m ∈ NC ) → ( Nc ( Spac
‘m) = 1c →
¬ (m ↑c
0c) ∈ NC )) |
76 | | nchoicelem9 6298 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc m) = 2c
∨ Nc ( Spac ‘ Tc m) =
3c)) |
77 | | id 19 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( Nc ( Spac
‘ Tc m) = 2c → Nc ( Spac
‘ Tc m) = 2c) |
78 | | 2nnc 6168 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
2c ∈ Nn |
79 | 77, 78 | syl6eqel 2441 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = 2c → Nc ( Spac
‘ Tc m) ∈ Nn ) |
80 | | id 19 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( Nc ( Spac
‘ Tc m) = 3c → Nc ( Spac
‘ Tc m) = 3c) |
81 | | 2p1e3c 6157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(2c +c 1c) =
3c |
82 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(2c ∈ Nn → (2c +c
1c) ∈ Nn ) |
83 | 78, 82 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(2c +c 1c) ∈ Nn |
84 | 81, 83 | eqeltrri 2424 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
3c ∈ Nn |
85 | 80, 84 | syl6eqel 2441 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = 3c → Nc ( Spac
‘ Tc m) ∈ Nn ) |
86 | 79, 85 | jaoi 368 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (( Nc ( Spac
‘ Tc m) = 2c
∨ Nc ( Spac ‘ Tc m) =
3c) → Nc ( Spac ‘ Tc m)
∈ Nn
) |
87 | | finnc 6244 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (( Spac ‘ Tc m)
∈ Fin ↔
Nc ( Spac
‘ Tc m) ∈ Nn ) |
88 | 86, 87 | sylibr 203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( Nc ( Spac
‘ Tc m) = 2c
∨ Nc ( Spac ‘ Tc m) =
3c) → ( Spac
‘ Tc m) ∈ Fin ) |
89 | 76, 88 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Spac ‘ Tc m)
∈ Fin
) |
90 | | 1p1e2c 6156 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(1c +c 1c) =
2c |
91 | 90 | eqeq2i 2363 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = (1c +c
1c) ↔ Nc ( Spac ‘ Tc m) =
2c) |
92 | | addccom 4407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(1c +c 2c) =
(2c +c
1c) |
93 | 92, 81 | eqtri 2373 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(1c +c 2c) =
3c |
94 | 93 | eqeq2i 2363 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = (1c +c
2c) ↔ Nc ( Spac ‘ Tc m) =
3c) |
95 | 91, 94 | orbi12i 507 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (( Nc ( Spac
‘ Tc m) = (1c +c
1c) ∨ Nc ( Spac
‘ Tc m) = (1c +c
2c)) ↔ ( Nc ( Spac ‘ Tc m) =
2c ∨ Nc ( Spac
‘ Tc m) = 3c)) |
96 | 76, 95 | sylibr 203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc m) = (1c +c
1c) ∨ Nc ( Spac
‘ Tc m) = (1c +c
2c))) |
97 | | nchoicelem3 6292 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Spac ‘m) = {m}) |
98 | 97 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Nc ( Spac
‘m) = Nc
{m}) |
99 | | df1c3g 6142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (m ∈ NC → 1c = Nc {m}) |
100 | 99 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
1c = Nc {m}) |
101 | 98, 100 | eqtr4d 2388 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Nc ( Spac
‘m) =
1c) |
102 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ( Nc ( Spac
‘m) = 1c →
Tc Nc (
Spac ‘m) = Tc
1c) |
103 | 101, 102 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Tc Nc (
Spac ‘m) = Tc
1c) |
104 | | tc1c 6166 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ Tc 1c =
1c |
105 | 103, 104 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Tc Nc (
Spac ‘m) = 1c) |
106 | 105 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Tc Nc (
Spac ‘m) +c 1c) =
(1c +c
1c)) |
107 | 106 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘ Tc m) =
(1c +c
1c))) |
108 | 105 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Tc Nc (
Spac ‘m) +c 2c) =
(1c +c
2c)) |
109 | 108 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘ Tc m) =
(1c +c
2c))) |
110 | 107, 109 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → ((
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc m) =
(1c +c 1c) ∨ Nc ( Spac ‘ Tc m) =
(1c +c
2c)))) |
111 | 110 | 3adant1 973 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → (( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc m) =
(1c +c 1c) ∨ Nc ( Spac ‘ Tc m) =
(1c +c
2c)))) |
112 | 96, 111 | mpbird 223 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c))) |
113 | 89, 112 | jca 518 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) |
114 | 113 | 3expia 1153 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (¬
(m ↑c
0c) ∈ NC → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
115 | 75, 114 | syld 40 |
. . . . . . . . . . . . . . . . . . 19
⊢ (( ≤c
We NC ∧ m ∈ NC ) → ( Nc ( Spac
‘m) = 1c → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
116 | 115 | ralrimiva 2698 |
. . . . . . . . . . . . . . . . . 18
⊢ ( ≤c
We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = 1c → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) |
117 | | addccom 4407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1c +c (n +c 1c)) =
((n +c
1c) +c
1c) |
118 | 117 | eqeq2i 2363 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ( Nc ( Spac
‘k) = (1c
+c (n
+c 1c)) ↔ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) |
119 | | nchoicelem13 6302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (k ∈ NC → 1c ≤c Nc ( Spac
‘k)) |
120 | 119 | ad2antrl 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → 1c ≤c Nc ( Spac
‘k)) |
121 | | simp2 956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (( ≤c
We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ n ∈ Nn
) |
122 | | simpr 447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) |
123 | | simpr 447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((n ∈ Nn ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) |
124 | | 0cnsuc 4402 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (n +c 1c) ≠
0c |
125 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (n ∈ Nn → (n
+c 1c) ∈
Nn ) |
126 | | peano1 4403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
0c ∈ Nn |
127 | | 1cnnc 4409 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
1c ∈ Nn |
128 | | addccan1 4561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((n +c 1c) ∈ Nn ∧ 0c ∈ Nn ∧ 1c ∈ Nn ) →
(((n +c
1c) +c 1c) =
(0c +c 1c) ↔
(n +c
1c) = 0c)) |
129 | 126, 127,
128 | mp3an23 1269 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((n +c 1c) ∈ Nn →
(((n +c
1c) +c 1c) =
(0c +c 1c) ↔
(n +c
1c) = 0c)) |
130 | 125, 129 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (n ∈ Nn → (((n
+c 1c) +c
1c) = (0c +c
1c) ↔ (n
+c 1c) =
0c)) |
131 | 130 | necon3bid 2552 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (n ∈ Nn → (((n
+c 1c) +c
1c) ≠ (0c +c
1c) ↔ (n
+c 1c) ≠
0c)) |
132 | 124, 131 | mpbiri 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (n ∈ Nn → ((n
+c 1c) +c
1c) ≠ (0c +c
1c)) |
133 | | addcid2 4408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(0c +c 1c) =
1c |
134 | 133 | neeq2i 2528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((n +c 1c)
+c 1c) ≠ (0c
+c 1c) ↔ ((n +c 1c)
+c 1c) ≠
1c) |
135 | 132, 134 | sylib 188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (n ∈ Nn → ((n
+c 1c) +c
1c) ≠ 1c) |
136 | 135 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((n ∈ Nn ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → ((n +c 1c)
+c 1c) ≠
1c) |
137 | 123, 136 | eqnetrd 2535 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((n ∈ Nn ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → Nc ( Spac
‘k) ≠
1c) |
138 | 121, 122,
137 | syl2an 463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → Nc ( Spac ‘k) ≠ 1c) |
139 | 138 | necomd 2600 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → 1c ≠ Nc ( Spac
‘k)) |
140 | | brltc 6115 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(1c <c Nc (
Spac ‘k) ↔ (1c ≤c
Nc ( Spac
‘k) ∧ 1c ≠ Nc ( Spac
‘k))) |
141 | 120, 139,
140 | sylanbrc 645 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → 1c <c Nc ( Spac
‘k)) |
142 | | nchoicelem15 6304 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((k ∈ NC ∧
1c <c Nc ( Spac ‘k)) → (k
↑c 0c) ∈ NC
) |
143 | 142 | ex 423 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (k ∈ NC → (1c <c Nc ( Spac
‘k) → (k ↑c 0c)
∈ NC
)) |
144 | 143 | ad2antrl 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → (1c <c Nc ( Spac
‘k) → (k ↑c 0c)
∈ NC
)) |
145 | | df-3an 936 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) ↔ ((k
∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c)) ∧ (k ↑c 0c)
∈ NC
)) |
146 | | ceclnn1 6190 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((2c ∈ Nn ∧ k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
(2c ↑c k) ∈ NC ) |
147 | 78, 146 | mp3an1 1264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
(2c ↑c k) ∈ NC ) |
148 | 147 | 3adant2 974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → (2c
↑c k) ∈ NC
) |
149 | 148 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC )) →
(2c ↑c k) ∈ NC ) |
150 | | fveq2 5329 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Spac ‘m) = ( Spac
‘(2c ↑c k))) |
151 | 150 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (m = (2c ↑c
k) → Nc (
Spac ‘m) = Nc ( Spac ‘(2c
↑c k))) |
152 | 151 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (m = (2c ↑c
k) → ( Nc
( Spac ‘m) = (1c +c
n) ↔ Nc (
Spac ‘(2c
↑c k)) =
(1c +c n))) |
153 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → Tc m =
Tc (2c
↑c k)) |
154 | 153 | fveq2d 5333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Spac ‘ Tc m) = (
Spac ‘ Tc (2c
↑c k))) |
155 | 154 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (m = (2c ↑c
k) → (( Spac ‘ Tc m)
∈ Fin ↔ (
Spac ‘ Tc (2c
↑c k)) ∈ Fin
)) |
156 | 154 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → Nc (
Spac ‘ Tc m) =
Nc ( Spac
‘ Tc (2c
↑c k))) |
157 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ( Nc ( Spac
‘m) = Nc
( Spac ‘(2c
↑c k)) → Tc Nc ( Spac ‘m) = Tc
Nc ( Spac
‘(2c ↑c k))) |
158 | 151, 157 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (m = (2c ↑c
k) → Tc Nc ( Spac ‘m) = Tc
Nc ( Spac
‘(2c ↑c k))) |
159 | 158 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → ( Tc Nc ( Spac ‘m) +c 1c) = (
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)) |
160 | 156, 159 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Nc
( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ↔
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c))) |
161 | 158 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → ( Tc Nc ( Spac ‘m) +c 2c) = (
Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)) |
162 | 156, 161 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Nc
( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c) ↔
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))) |
163 | 160, 162 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (m = (2c ↑c
k) → (( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) |
164 | 155, 163 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (m = (2c ↑c
k) → ((( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))))) |
165 | 152, 164 | imbi12d 311 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (m = (2c ↑c
k) → (( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))))) |
166 | 165 | rspccva 2955 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
∧ (2c
↑c k) ∈ NC ) → ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))))) |
167 | | tce2 6237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Tc (2c
↑c k) =
(2c ↑c Tc k)) |
168 | 167 | fveq2d 5333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → (
Spac ‘ Tc (2c
↑c k)) = ( Spac ‘(2c
↑c Tc k))) |
169 | 168 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → ((
Spac ‘ Tc (2c
↑c k)) ∈ Fin ↔ ( Spac ‘(2c
↑c Tc k)) ∈ Fin )) |
170 | 168 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Nc ( Spac
‘ Tc (2c
↑c k)) = Nc ( Spac
‘(2c ↑c Tc k))) |
171 | 170 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ↔ Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c))) |
172 | 170 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c) ↔ Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c))) |
173 | 171, 172 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → ((
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)) ↔ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))) |
174 | 169, 173 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
((( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))) ↔ (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c))))) |
175 | 174 | imbi2d 307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → ((
Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) ↔ ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))))) |
176 | 175 | 3adant2 974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) ↔ ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))))) |
177 | 176 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) ↔ ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))))) |
178 | | nchoicelem7 6296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Nc ( Spac
‘k) = ( Nc ( Spac
‘(2c ↑c k)) +c
1c)) |
179 | 178 | 3adant2 974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Nc ( Spac ‘k) = ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) |
180 | | simp2 956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Nc ( Spac ‘k) = ((n
+c 1c) +c
1c)) |
181 | 179, 180 | eqtr3d 2387 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c)) |
182 | 181 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c)) |
183 | | nnnc 6147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((n +c 1c) ∈ Nn → (n +c 1c) ∈ NC
) |
184 | | fvex 5340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ( Spac ‘(2c
↑c k)) ∈ V |
185 | 184 | ncelncsi 6122 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ Nc ( Spac
‘(2c ↑c k)) ∈ NC |
186 | | peano4nc 6151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (( Nc ( Spac
‘(2c ↑c k)) ∈ NC ∧ (n +c 1c) ∈ NC ) → (( Nc ( Spac
‘(2c ↑c k)) +c 1c) =
((n +c
1c) +c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) |
187 | 185, 186 | mpan 651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((n +c 1c) ∈ NC → (( Nc ( Spac
‘(2c ↑c k)) +c 1c) =
((n +c
1c) +c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) |
188 | 125, 183,
187 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (n ∈ Nn → (( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) |
189 | 188 | ad2antlr 707 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) |
190 | 182, 189 | mpbid 201 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Nc ( Spac ‘(2c
↑c k)) = (n +c
1c)) |
191 | | addccom 4407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (n +c 1c) =
(1c +c n) |
192 | 190, 191 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Nc ( Spac ‘(2c
↑c k)) =
(1c +c n)) |
193 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ( Nc ( Spac
‘(2c ↑c Tc k))
∈ Nn → (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) ∈
Nn ) |
194 | | tccl 6161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (k ∈ NC → Tc
k ∈ NC ) |
195 | | te0c 6238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (k ∈ NC → ( Tc
k ↑c
0c) ∈ NC ) |
196 | | nchoicelem7 6296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (( Tc k
∈ NC ∧ ( Tc
k ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) |
197 | 194, 195,
196 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (k ∈ NC → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) |
198 | 197 | 3ad2ant1 976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) |
199 | 198 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) |
200 | 199 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘ Tc k)
∈ Nn ↔ (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) ∈
Nn )) |
201 | 193, 200 | syl5ibr 212 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c Tc k)) ∈ Nn → Nc ( Spac ‘ Tc k)
∈ Nn
)) |
202 | | finnc 6244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (( Spac ‘(2c
↑c Tc k)) ∈ Fin ↔ Nc ( Spac ‘(2c
↑c Tc k)) ∈ Nn ) |
203 | | finnc 6244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (( Spac ‘ Tc k)
∈ Fin ↔
Nc ( Spac
‘ Tc k) ∈ Nn ) |
204 | 201, 202,
203 | 3imtr4g 261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin → ( Spac ‘ Tc k)
∈ Fin
)) |
205 | | addceq1 4384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) → ( Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) = (( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) +c
1c)) |
206 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ( Nc ( Spac
‘k) = ( Nc ( Spac
‘(2c ↑c k)) +c 1c)
→ Tc Nc ( Spac
‘k) = Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) |
207 | 178, 206 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Tc Nc (
Spac ‘k) = Tc (
Nc ( Spac
‘(2c ↑c k)) +c
1c)) |
208 | 207 | 3adant2 974 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Tc
Nc ( Spac
‘k) = Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) |
209 | 208 | adantl 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Tc
Nc ( Spac
‘k) = Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) |
210 | | tcdi 6165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (( Nc ( Spac
‘(2c ↑c k)) ∈ NC ∧
1c ∈ NC ) → Tc (
Nc ( Spac
‘(2c ↑c k)) +c 1c) = (
Tc Nc (
Spac ‘(2c
↑c k))
+c Tc
1c)) |
211 | 185, 5, 210 | mp2an 653 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c Tc
1c) |
212 | 104 | addceq2i 4388 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ( Tc Nc ( Spac ‘(2c
↑c k))
+c Tc
1c) = ( Tc Nc ( Spac
‘(2c ↑c k)) +c
1c) |
213 | 211, 212 | eqtri 2373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) |
214 | 209, 213 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Tc
Nc ( Spac
‘k) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)) |
215 | 214 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Tc Nc ( Spac ‘k) +c 1c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) +c
1c)) |
216 | 199, 215 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ↔
( Nc ( Spac ‘(2c
↑c Tc k)) +c 1c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) +c
1c))) |
217 | 205, 216 | syl5ibr 212 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 1c)
→ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
1c))) |
218 | | addceq1 4384 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c) → ( Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) = (( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c) +c
1c)) |
219 | 214 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Tc Nc ( Spac ‘k) +c 2c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) +c
2c)) |
220 | | addc32 4417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) +c
2c) = (( Tc Nc ( Spac
‘(2c ↑c k)) +c 2c)
+c 1c) |
221 | 219, 220 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Tc Nc ( Spac ‘k) +c 2c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 2c) +c
1c)) |
222 | 199, 221 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 2c) ↔
( Nc ( Spac ‘(2c
↑c Tc k)) +c 1c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 2c) +c
1c))) |
223 | 218, 222 | syl5ibr 212 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 2c)
→ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))) |
224 | 217, 223 | orim12d 811 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 1c) ∨ Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 2c))
→ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) |
225 | 204, 224 | anim12d 546 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ((( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c))) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
226 | 192, 225 | embantd 50 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
227 | 177, 226 | sylbid 206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
228 | 166, 227 | syl5 28 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ((∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
∧ (2c
↑c k) ∈ NC ) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
229 | 228 | exp4b 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (( ≤c
We NC ∧ n ∈ Nn ) →
((k ∈
NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))))) |
230 | 229 | com23 72 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (( ≤c
We NC ∧ n ∈ Nn ) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ((k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC ) →
((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))))) |
231 | 230 | 3impia 1148 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (( ≤c
We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ ((k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC ) →
((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))))) |
232 | 231 | imp 418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC )) →
((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
233 | 149, 232 | mpd 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC )) →
(( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) |
234 | 145, 233 | sylan2br 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ ((k
∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c)) ∧ (k ↑c 0c)
∈ NC )) →
(( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) |
235 | 234 | expr 598 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → ((k
↑c 0c) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
236 | 144, 235 | syld 40 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → (1c <c Nc ( Spac
‘k) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
237 | 141, 236 | mpd 14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c)))) |
238 | 237 | expr 598 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ k ∈ NC ) → ( Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
239 | 118, 238 | syl5bi 208 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ k ∈ NC ) → ( Nc ( Spac
‘k) = (1c
+c (n
+c 1c)) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) |
240 | 239 | ralrimiva 2698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (( ≤c
We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))) |
241 | 240 | 3exp 1150 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( ≤c
We NC →
(n ∈
Nn → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) |
242 | 241 | com12 27 |
. . . . . . . . . . . . . . . . . . 19
⊢ (n ∈ Nn → ( ≤c We NC → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) |
243 | 242 | a2d 23 |
. . . . . . . . . . . . . . . . . 18
⊢ (n ∈ Nn → (( ≤c We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ ( ≤c We NC → ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c) ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) |
244 | 32, 39, 44, 67, 72, 116, 243 | finds 4412 |
. . . . . . . . . . . . . . . . 17
⊢ (x ∈ Nn → ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) |
245 | | fveq2 5329 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Spac ‘m) = ( Spac
‘M)) |
246 | 245 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = M →
Nc ( Spac
‘m) = Nc
( Spac ‘M)) |
247 | 246 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . 19
⊢ (m = M → (
Nc ( Spac
‘m) = (1c
+c x) ↔ Nc ( Spac
‘M) = (1c
+c x))) |
248 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M →
Tc m = Tc
M) |
249 | 248 | fveq2d 5333 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Spac ‘ Tc m) = (
Spac ‘ Tc M)) |
250 | 249 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = M → ((
Spac ‘ Tc m)
∈ Fin ↔ (
Spac ‘ Tc M)
∈ Fin
)) |
251 | 249 | nceqd 6111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M →
Nc ( Spac
‘ Tc m) = Nc ( Spac ‘ Tc M)) |
252 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ( Nc ( Spac
‘m) = Nc
( Spac ‘M) → Tc
Nc ( Spac
‘m) = Tc Nc ( Spac ‘M)) |
253 | 246, 252 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = M →
Tc Nc (
Spac ‘m) = Tc
Nc ( Spac
‘M)) |
254 | 253 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M → (
Tc Nc (
Spac ‘m) +c 1c) = (
Tc Nc (
Spac ‘M) +c
1c)) |
255 | 251, 254 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
1c))) |
256 | 253 | addceq1d 4390 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M → (
Tc Nc (
Spac ‘m) +c 2c) = (
Tc Nc (
Spac ‘M) +c
2c)) |
257 | 251, 256 | eqeq12d 2367 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))) |
258 | 255, 257 | orbi12d 690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = M → ((
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))) |
259 | 250, 258 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . 19
⊢ (m = M → (((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) |
260 | 247, 259 | imbi12d 311 |
. . . . . . . . . . . . . . . . . 18
⊢ (m = M → ((
Nc ( Spac
‘m) = (1c
+c x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘M) = (1c +c
x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
261 | 260 | rspccv 2953 |
. . . . . . . . . . . . . . . . 17
⊢ (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ (M ∈ NC → ( Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
262 | 244, 261 | syl6com 31 |
. . . . . . . . . . . . . . . 16
⊢ ( ≤c
We NC →
(x ∈
Nn → (M
∈ NC → (
Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))))) |
263 | 262 | com23 72 |
. . . . . . . . . . . . . . 15
⊢ ( ≤c
We NC →
(M ∈
NC → (x
∈ Nn → (
Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))))) |
264 | 263 | imp 418 |
. . . . . . . . . . . . . 14
⊢ (( ≤c
We NC ∧ M ∈ NC ) →
(x ∈
Nn → ( Nc (
Spac ‘M) = (1c +c
x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
265 | 264 | adantr 451 |
. . . . . . . . . . . . 13
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (x ∈ Nn → ( Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
266 | 265 | adantr 451 |
. . . . . . . . . . . 12
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (x ∈ Nn → ( Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
267 | 27, 31, 266 | 3syld 51 |
. . . . . . . . . . 11
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (t =
(1c +c x) → ( Nc ( Spac ‘M) = (1c +c
x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
268 | 267 | imp3a 420 |
. . . . . . . . . 10
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → ((t =
(1c +c x) ∧ Nc ( Spac
‘M) = (1c
+c x)) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) |
269 | 15, 268 | syl5 28 |
. . . . . . . . 9
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (( Nc ( Spac ‘M) = (1c +c
x) ∧
t = Nc ( Spac ‘M)) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) |
270 | 269 | exp3a 425 |
. . . . . . . 8
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → ( Nc ( Spac ‘M) = (1c +c
x) → (t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
271 | 270 | rexlimdva 2739 |
. . . . . . 7
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (∃x ∈ NC Nc ( Spac
‘M) = (1c
+c x) → (t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
272 | 9, 271 | syl5bi 208 |
. . . . . 6
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (1c ≤c Nc ( Spac
‘M) → (t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) |
273 | 4, 272 | mpd 14 |
. . . . 5
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (t =
Nc ( Spac
‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) |
274 | 273 | rexlimdva 2739 |
. . . 4
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (∃t ∈ Nn t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) |
275 | 2, 274 | syl5bi 208 |
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc ( Spac
‘M) ∈ Nn → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) |
276 | 1, 275 | syl5bi 208 |
. 2
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (( Spac ‘M) ∈ Fin → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) |
277 | 276 | 3impia 1148 |
1
⊢ (( ≤c
We NC ∧ M ∈ NC ∧ ( Spac
‘M) ∈ Fin ) → ((
Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c) ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))) |