| Step | Hyp | Ref
 | Expression | 
| 1 |   | finnc 6244 | 
. . 3
⊢ (( Spac ‘M) ∈ Fin ↔ Nc ( Spac ‘M) ∈ Nn ) | 
| 2 |   | risset 2662 | 
. . . 4
⊢ ( Nc ( Spac
‘M) ∈ Nn ↔ ∃t ∈ Nn t = Nc ( Spac ‘M)) | 
| 3 |   | nchoicelem13 6302 | 
. . . . . . 7
⊢ (M ∈ NC → 1c ≤c Nc ( Spac
‘M)) | 
| 4 | 3 | ad2antlr 707 | 
. . . . . 6
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → 1c ≤c Nc ( Spac
‘M)) | 
| 5 |   | 1cnc 6140 | 
. . . . . . . 8
⊢
1c ∈ NC | 
| 6 |   | fvex 5340 | 
. . . . . . . . 9
⊢ ( Spac ‘M) ∈
V | 
| 7 | 6 | ncelncsi 6122 | 
. . . . . . . 8
⊢  Nc ( Spac
‘M) ∈ NC | 
| 8 |   | dflec2 6211 | 
. . . . . . . 8
⊢
((1c ∈ NC ∧ Nc ( Spac
‘M) ∈ NC ) →
(1c ≤c Nc ( Spac ‘M) ↔ ∃x ∈ NC Nc ( Spac
‘M) = (1c
+c x))) | 
| 9 | 5, 7, 8 | mp2an 653 | 
. . . . . . 7
⊢
(1c ≤c Nc (
Spac ‘M) ↔ ∃x ∈ NC Nc ( Spac
‘M) = (1c
+c x)) | 
| 10 |   | eqtr 2370 | 
. . . . . . . . . . . 12
⊢ ((t = Nc ( Spac ‘M) ∧ Nc ( Spac
‘M) = (1c
+c x)) → t = (1c +c
x)) | 
| 11 | 10 | ancoms 439 | 
. . . . . . . . . . 11
⊢ (( Nc ( Spac
‘M) = (1c
+c x) ∧ t = Nc ( Spac
‘M)) → t = (1c +c
x)) | 
| 12 |   | eqtr2 2371 | 
. . . . . . . . . . . . 13
⊢ ((t = Nc ( Spac ‘M) ∧ t = (1c +c
x)) → Nc
( Spac ‘M) = (1c +c
x)) | 
| 13 | 12 | ex 423 | 
. . . . . . . . . . . 12
⊢ (t = Nc ( Spac ‘M) → (t =
(1c +c x) → Nc ( Spac ‘M) = (1c +c
x))) | 
| 14 | 13 | adantl 452 | 
. . . . . . . . . . 11
⊢ (( Nc ( Spac
‘M) = (1c
+c x) ∧ t = Nc ( Spac
‘M)) → (t = (1c +c
x) → Nc (
Spac ‘M) = (1c +c
x))) | 
| 15 | 11, 14 | jcai 522 | 
. . . . . . . . . 10
⊢ (( Nc ( Spac
‘M) = (1c
+c x) ∧ t = Nc ( Spac
‘M)) → (t = (1c +c
x) ∧ Nc ( Spac
‘M) = (1c
+c x))) | 
| 16 |   | addceq2 4385 | 
. . . . . . . . . . . . . . . . . 18
⊢ (k = 1c → (x +c k) = (x
+c 1c)) | 
| 17 |   | addccom 4407 | 
. . . . . . . . . . . . . . . . . 18
⊢ (x +c 1c) =
(1c +c x) | 
| 18 | 16, 17 | syl6eq 2401 | 
. . . . . . . . . . . . . . . . 17
⊢ (k = 1c → (x +c k) = (1c +c
x)) | 
| 19 | 18 | eqeq2d 2364 | 
. . . . . . . . . . . . . . . 16
⊢ (k = 1c → (t = (x
+c k) ↔ t = (1c +c
x))) | 
| 20 | 19 | rspcev 2956 | 
. . . . . . . . . . . . . . 15
⊢
((1c ∈ NC ∧ t = (1c +c
x)) → ∃k ∈ NC t = (x
+c k)) | 
| 21 | 5, 20 | mpan 651 | 
. . . . . . . . . . . . . 14
⊢ (t = (1c +c
x) → ∃k ∈ NC t = (x
+c k)) | 
| 22 |   | nnnc 6147 | 
. . . . . . . . . . . . . . . 16
⊢ (t ∈ Nn → t ∈ NC
) | 
| 23 |   | dflec2 6211 | 
. . . . . . . . . . . . . . . 16
⊢ ((x ∈ NC ∧ t ∈ NC ) → (x
≤c t ↔ ∃k ∈ NC t = (x
+c k))) | 
| 24 | 22, 23 | sylan2 460 | 
. . . . . . . . . . . . . . 15
⊢ ((x ∈ NC ∧ t ∈ Nn ) → (x
≤c t ↔ ∃k ∈ NC t = (x
+c k))) | 
| 25 | 24 | ancoms 439 | 
. . . . . . . . . . . . . 14
⊢ ((t ∈ Nn ∧ x ∈ NC ) → (x
≤c t ↔ ∃k ∈ NC t = (x
+c k))) | 
| 26 | 21, 25 | syl5ibr 212 | 
. . . . . . . . . . . . 13
⊢ ((t ∈ Nn ∧ x ∈ NC ) → (t =
(1c +c x) → x
≤c t)) | 
| 27 | 26 | adantll 694 | 
. . . . . . . . . . . 12
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (t =
(1c +c x) → x
≤c t)) | 
| 28 |   | nclenn 6250 | 
. . . . . . . . . . . . . . 15
⊢ ((x ∈ NC ∧ t ∈ Nn ∧ x ≤c t) → x
∈ Nn
) | 
| 29 | 28 | 3expia 1153 | 
. . . . . . . . . . . . . 14
⊢ ((x ∈ NC ∧ t ∈ Nn ) → (x
≤c t → x ∈ Nn )) | 
| 30 | 29 | ancoms 439 | 
. . . . . . . . . . . . 13
⊢ ((t ∈ Nn ∧ x ∈ NC ) → (x
≤c t → x ∈ Nn )) | 
| 31 | 30 | adantll 694 | 
. . . . . . . . . . . 12
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (x
≤c t → x ∈ Nn )) | 
| 32 |   | nchoicelem16 6305 | 
. . . . . . . . . . . . . . . . . 18
⊢ {t ∣ (
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))}
∈ V | 
| 33 |   | addceq2 4385 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (t = 0c →
(1c +c t) = (1c +c
0c)) | 
| 34 |   | addcid1 4406 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(1c +c 0c) =
1c | 
| 35 | 33, 34 | syl6eq 2401 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = 0c →
(1c +c t) = 1c) | 
| 36 | 35 | eqeq2d 2364 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = 0c → ( Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) =
1c)) | 
| 37 | 36 | imbi1d 308 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = 0c → (( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = 1c → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) | 
| 38 | 37 | ralbidv 2635 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (t = 0c → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = 1c → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) | 
| 39 | 38 | imbi2d 307 | 
. . . . . . . . . . . . . . . . . 18
⊢ (t = 0c → (( ≤c
We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = 1c → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))))) | 
| 40 |   | addceq2 4385 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = n →
(1c +c t) = (1c +c
n)) | 
| 41 | 40 | eqeq2d 2364 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = n → (
Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) = (1c
+c n))) | 
| 42 | 41 | imbi1d 308 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = n → ((
Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) | 
| 43 | 42 | ralbidv 2635 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (t = n →
(∀m
∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) | 
| 44 | 43 | imbi2d 307 | 
. . . . . . . . . . . . . . . . . 18
⊢ (t = n → ((
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))))) | 
| 45 |   | addceq2 4385 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (t = (n
+c 1c) → (1c
+c t) =
(1c +c (n +c
1c))) | 
| 46 | 45 | eqeq2d 2364 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = (n
+c 1c) → ( Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) = (1c
+c (n
+c 1c)))) | 
| 47 | 46 | imbi1d 308 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = (n
+c 1c) → (( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc m) ∈ Fin ∧ ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)))))) | 
| 48 | 47 | ralbidv 2635 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = (n
+c 1c) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc m) ∈ Fin ∧ ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)))))) | 
| 49 |   | fveq2 5329 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Spac ‘m) = ( Spac
‘k)) | 
| 50 | 49 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = k →
Nc ( Spac
‘m) = Nc
( Spac ‘k)) | 
| 51 | 50 | eqeq1d 2361 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = k → (
Nc ( Spac
‘m) = (1c
+c (n
+c 1c)) ↔ Nc ( Spac
‘k) = (1c
+c (n
+c 1c)))) | 
| 52 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k →
Tc m = Tc
k) | 
| 53 | 52 | fveq2d 5333 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Spac ‘ Tc m) = (
Spac ‘ Tc k)) | 
| 54 | 53 | eleq1d 2419 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = k → ((
Spac ‘ Tc m)
∈ Fin ↔ (
Spac ‘ Tc k)
∈ Fin
)) | 
| 55 | 53 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k →
Nc ( Spac
‘ Tc m) = Nc ( Spac ‘ Tc k)) | 
| 56 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ( Nc ( Spac
‘m) = Nc
( Spac ‘k) → Tc
Nc ( Spac
‘m) = Tc Nc ( Spac ‘k)) | 
| 57 | 50, 56 | syl 15 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (m = k →
Tc Nc (
Spac ‘m) = Tc
Nc ( Spac
‘k)) | 
| 58 | 57 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k → (
Tc Nc (
Spac ‘m) +c 1c) = (
Tc Nc (
Spac ‘k) +c
1c)) | 
| 59 | 55, 58 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
1c))) | 
| 60 | 57 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (m = k → (
Tc Nc (
Spac ‘m) +c 2c) = (
Tc Nc (
Spac ‘k) +c
2c)) | 
| 61 | 55, 60 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = k → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))) | 
| 62 | 59, 61 | orbi12d 690 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = k → ((
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) | 
| 63 | 54, 62 | anbi12d 691 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = k → (((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 64 | 51, 63 | imbi12d 311 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = k → ((
Nc ( Spac
‘m) = (1c
+c (n
+c 1c)) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c)))))) | 
| 65 | 64 | cbvralv 2836 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c (n
+c 1c)) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))) | 
| 66 | 48, 65 | syl6bb 252 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (t = (n
+c 1c) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c)))))) | 
| 67 | 66 | imbi2d 307 | 
. . . . . . . . . . . . . . . . . 18
⊢ (t = (n
+c 1c) → (( ≤c We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) | 
| 68 |   | addceq2 4385 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = x →
(1c +c t) = (1c +c
x)) | 
| 69 | 68 | eqeq2d 2364 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = x → (
Nc ( Spac
‘m) = (1c
+c t) ↔ Nc ( Spac
‘m) = (1c
+c x))) | 
| 70 | 69 | imbi1d 308 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (t = x → ((
Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘m) = (1c +c
x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) | 
| 71 | 70 | ralbidv 2635 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (t = x →
(∀m
∈ NC ( Nc ( Spac
‘m) = (1c
+c t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) | 
| 72 | 71 | imbi2d 307 | 
. . . . . . . . . . . . . . . . . 18
⊢ (t = x → ((
≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
t) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
↔ ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))))) | 
| 73 |   | nchoicelem14 6303 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((m ∈ NC ∧ Nc ( Spac
‘m) = 1c) →
¬ (m ↑c
0c) ∈ NC ) | 
| 74 | 73 | ex 423 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m ∈ NC → ( Nc ( Spac ‘m) = 1c → ¬ (m ↑c 0c)
∈ NC
)) | 
| 75 | 74 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (( ≤c
We NC ∧ m ∈ NC ) → ( Nc ( Spac
‘m) = 1c →
¬ (m ↑c
0c) ∈ NC )) | 
| 76 |   | nchoicelem9 6298 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc m) = 2c 
∨ Nc ( Spac ‘ Tc m) =
3c)) | 
| 77 |   | id 19 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( Nc ( Spac
‘ Tc m) = 2c → Nc ( Spac
‘ Tc m) = 2c) | 
| 78 |   | 2nnc 6168 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
2c ∈ Nn | 
| 79 | 77, 78 | syl6eqel 2441 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = 2c → Nc ( Spac
‘ Tc m) ∈ Nn ) | 
| 80 |   | id 19 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ( Nc ( Spac
‘ Tc m) = 3c → Nc ( Spac
‘ Tc m) = 3c) | 
| 81 |   | 2p1e3c 6157 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(2c +c 1c) =
3c | 
| 82 |   | peano2 4404 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(2c ∈ Nn → (2c +c
1c) ∈ Nn ) | 
| 83 | 78, 82 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(2c +c 1c) ∈ Nn | 
| 84 | 81, 83 | eqeltrri 2424 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
3c ∈ Nn | 
| 85 | 80, 84 | syl6eqel 2441 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = 3c → Nc ( Spac
‘ Tc m) ∈ Nn ) | 
| 86 | 79, 85 | jaoi 368 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (( Nc ( Spac
‘ Tc m) = 2c 
∨ Nc ( Spac ‘ Tc m) =
3c) → Nc ( Spac ‘ Tc m)
∈ Nn
) | 
| 87 |   | finnc 6244 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (( Spac ‘ Tc m)
∈ Fin ↔
Nc ( Spac
‘ Tc m) ∈ Nn ) | 
| 88 | 86, 87 | sylibr 203 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( Nc ( Spac
‘ Tc m) = 2c 
∨ Nc ( Spac ‘ Tc m) =
3c) → ( Spac
‘ Tc m) ∈ Fin ) | 
| 89 | 76, 88 | syl 15 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Spac ‘ Tc m)
∈ Fin
) | 
| 90 |   | 1p1e2c 6156 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(1c +c 1c) =
2c | 
| 91 | 90 | eqeq2i 2363 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = (1c +c
1c) ↔ Nc ( Spac ‘ Tc m) =
2c) | 
| 92 |   | addccom 4407 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(1c +c 2c) =
(2c +c
1c) | 
| 93 | 92, 81 | eqtri 2373 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(1c +c 2c) =
3c | 
| 94 | 93 | eqeq2i 2363 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ( Nc ( Spac
‘ Tc m) = (1c +c
2c) ↔ Nc ( Spac ‘ Tc m) =
3c) | 
| 95 | 91, 94 | orbi12i 507 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (( Nc ( Spac
‘ Tc m) = (1c +c
1c)  ∨ Nc ( Spac
‘ Tc m) = (1c +c
2c)) ↔ ( Nc ( Spac ‘ Tc m) =
2c  ∨ Nc ( Spac
‘ Tc m) = 3c)) | 
| 96 | 76, 95 | sylibr 203 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc m) = (1c +c
1c)  ∨ Nc ( Spac
‘ Tc m) = (1c +c
2c))) | 
| 97 |   | nchoicelem3 6292 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Spac ‘m) = {m}) | 
| 98 | 97 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Nc ( Spac
‘m) = Nc
{m}) | 
| 99 |   | df1c3g 6142 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (m ∈ NC → 1c = Nc {m}) | 
| 100 | 99 | adantr 451 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
1c = Nc {m}) | 
| 101 | 98, 100 | eqtr4d 2388 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Nc ( Spac
‘m) =
1c) | 
| 102 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ( Nc ( Spac
‘m) = 1c →
Tc Nc (
Spac ‘m) = Tc
1c) | 
| 103 | 101, 102 | syl 15 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Tc Nc (
Spac ‘m) = Tc
1c) | 
| 104 |   | tc1c 6166 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢  Tc 1c =
1c | 
| 105 | 103, 104 | syl6eq 2401 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) →
Tc Nc (
Spac ‘m) = 1c) | 
| 106 | 105 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Tc Nc (
Spac ‘m) +c 1c) =
(1c +c
1c)) | 
| 107 | 106 | eqeq2d 2364 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘ Tc m) =
(1c +c
1c))) | 
| 108 | 105 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Tc Nc (
Spac ‘m) +c 2c) =
(1c +c
2c)) | 
| 109 | 108 | eqeq2d 2364 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘ Tc m) =
(1c +c
2c))) | 
| 110 | 107, 109 | orbi12d 690 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((m ∈ NC ∧ ¬ (m ↑c 0c)
∈ NC ) → ((
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc m) =
(1c +c 1c)  ∨ Nc ( Spac ‘ Tc m) =
(1c +c
2c)))) | 
| 111 | 110 | 3adant1 973 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → (( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc m) =
(1c +c 1c)  ∨ Nc ( Spac ‘ Tc m) =
(1c +c
2c)))) | 
| 112 | 96, 111 | mpbird 223 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → ( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c))) | 
| 113 | 89, 112 | jca 518 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (( ≤c
We NC ∧ m ∈ NC ∧ ¬ (m
↑c 0c) ∈ NC ) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))) | 
| 114 | 113 | 3expia 1153 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (( ≤c
We NC ∧ m ∈ NC ) → (¬
(m ↑c
0c) ∈ NC → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) | 
| 115 | 75, 114 | syld 40 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (( ≤c
We NC ∧ m ∈ NC ) → ( Nc ( Spac
‘m) = 1c → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) | 
| 116 | 115 | ralrimiva 2698 | 
. . . . . . . . . . . . . . . . . 18
⊢ ( ≤c
We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = 1c → ((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c))))) | 
| 117 |   | addccom 4407 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1c +c (n +c 1c)) =
((n +c
1c) +c
1c) | 
| 118 | 117 | eqeq2i 2363 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ( Nc ( Spac
‘k) = (1c
+c (n
+c 1c)) ↔ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) | 
| 119 |   | nchoicelem13 6302 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (k ∈ NC → 1c ≤c Nc ( Spac
‘k)) | 
| 120 | 119 | ad2antrl 708 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → 1c ≤c Nc ( Spac
‘k)) | 
| 121 |   | simp2 956 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (( ≤c
We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ n ∈ Nn
) | 
| 122 |   | simpr 447 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) | 
| 123 |   | simpr 447 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((n ∈ Nn ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) | 
| 124 |   | 0cnsuc 4402 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (n +c 1c) ≠
0c | 
| 125 |   | peano2 4404 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (n ∈ Nn → (n
+c 1c) ∈
Nn ) | 
| 126 |   | peano1 4403 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
0c ∈ Nn | 
| 127 |   | 1cnnc 4409 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
1c ∈ Nn | 
| 128 |   | addccan1 4561 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((n +c 1c) ∈ Nn ∧ 0c ∈ Nn ∧ 1c ∈ Nn ) →
(((n +c
1c) +c 1c) =
(0c +c 1c) ↔
(n +c
1c) = 0c)) | 
| 129 | 126, 127,
128 | mp3an23 1269 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((n +c 1c) ∈ Nn →
(((n +c
1c) +c 1c) =
(0c +c 1c) ↔
(n +c
1c) = 0c)) | 
| 130 | 125, 129 | syl 15 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (n ∈ Nn → (((n
+c 1c) +c
1c) = (0c +c
1c) ↔ (n
+c 1c) =
0c)) | 
| 131 | 130 | necon3bid 2552 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (n ∈ Nn → (((n
+c 1c) +c
1c) ≠ (0c +c
1c) ↔ (n
+c 1c) ≠
0c)) | 
| 132 | 124, 131 | mpbiri 224 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (n ∈ Nn → ((n
+c 1c) +c
1c) ≠ (0c +c
1c)) | 
| 133 |   | addcid2 4408 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(0c +c 1c) =
1c | 
| 134 | 133 | neeq2i 2528 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((n +c 1c)
+c 1c) ≠ (0c
+c 1c) ↔ ((n +c 1c)
+c 1c) ≠
1c) | 
| 135 | 132, 134 | sylib 188 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (n ∈ Nn → ((n
+c 1c) +c
1c) ≠ 1c) | 
| 136 | 135 | adantr 451 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((n ∈ Nn ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → ((n +c 1c)
+c 1c) ≠
1c) | 
| 137 | 123, 136 | eqnetrd 2535 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((n ∈ Nn ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c)) → Nc ( Spac
‘k) ≠
1c) | 
| 138 | 121, 122,
137 | syl2an 463 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → Nc ( Spac ‘k) ≠ 1c) | 
| 139 | 138 | necomd 2600 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → 1c ≠ Nc ( Spac
‘k)) | 
| 140 |   | brltc 6115 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(1c <c Nc (
Spac ‘k) ↔ (1c ≤c
Nc ( Spac
‘k) ∧ 1c ≠ Nc ( Spac
‘k))) | 
| 141 | 120, 139,
140 | sylanbrc 645 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → 1c <c Nc ( Spac
‘k)) | 
| 142 |   | nchoicelem15 6304 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((k ∈ NC ∧
1c <c Nc ( Spac ‘k)) → (k
↑c 0c) ∈ NC
) | 
| 143 | 142 | ex 423 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (k ∈ NC → (1c <c Nc ( Spac
‘k) → (k ↑c 0c)
∈ NC
)) | 
| 144 | 143 | ad2antrl 708 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → (1c <c Nc ( Spac
‘k) → (k ↑c 0c)
∈ NC
)) | 
| 145 |   | df-3an 936 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) ↔ ((k
∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c)) ∧ (k ↑c 0c)
∈ NC
)) | 
| 146 |   | ceclnn1 6190 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((2c ∈ Nn ∧ k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
(2c ↑c k) ∈ NC ) | 
| 147 | 78, 146 | mp3an1 1264 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
(2c ↑c k) ∈ NC ) | 
| 148 | 147 | 3adant2 974 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → (2c
↑c k) ∈ NC
) | 
| 149 | 148 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC )) →
(2c ↑c k) ∈ NC ) | 
| 150 |   | fveq2 5329 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Spac ‘m) = ( Spac
‘(2c ↑c k))) | 
| 151 | 150 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (m = (2c ↑c
k) → Nc (
Spac ‘m) = Nc ( Spac ‘(2c
↑c k))) | 
| 152 | 151 | eqeq1d 2361 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (m = (2c ↑c
k) → ( Nc
( Spac ‘m) = (1c +c
n) ↔ Nc (
Spac ‘(2c
↑c k)) =
(1c +c n))) | 
| 153 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → Tc m =
Tc (2c
↑c k)) | 
| 154 | 153 | fveq2d 5333 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Spac ‘ Tc m) = (
Spac ‘ Tc (2c
↑c k))) | 
| 155 | 154 | eleq1d 2419 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (m = (2c ↑c
k) → (( Spac ‘ Tc m)
∈ Fin ↔ (
Spac ‘ Tc (2c
↑c k)) ∈ Fin
)) | 
| 156 | 154 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → Nc (
Spac ‘ Tc m) =
Nc ( Spac
‘ Tc (2c
↑c k))) | 
| 157 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ( Nc ( Spac
‘m) = Nc
( Spac ‘(2c
↑c k)) → Tc Nc ( Spac ‘m) = Tc
Nc ( Spac
‘(2c ↑c k))) | 
| 158 | 151, 157 | syl 15 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (m = (2c ↑c
k) → Tc Nc ( Spac ‘m) = Tc
Nc ( Spac
‘(2c ↑c k))) | 
| 159 | 158 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → ( Tc Nc ( Spac ‘m) +c 1c) = (
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)) | 
| 160 | 156, 159 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Nc
( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c) ↔
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c))) | 
| 161 | 158 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (m = (2c ↑c
k) → ( Tc Nc ( Spac ‘m) +c 2c) = (
Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)) | 
| 162 | 156, 161 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (m = (2c ↑c
k) → ( Nc
( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c) ↔
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))) | 
| 163 | 160, 162 | orbi12d 690 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (m = (2c ↑c
k) → (( Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) | 
| 164 | 155, 163 | anbi12d 691 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (m = (2c ↑c
k) → ((( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))))) | 
| 165 | 152, 164 | imbi12d 311 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (m = (2c ↑c
k) → (( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))))) | 
| 166 | 165 | rspccva 2955 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
∧ (2c
↑c k) ∈ NC ) → ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))))) | 
| 167 |   | tce2 6237 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Tc (2c
↑c k) =
(2c ↑c Tc k)) | 
| 168 | 167 | fveq2d 5333 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → (
Spac ‘ Tc (2c
↑c k)) = ( Spac ‘(2c
↑c Tc k))) | 
| 169 | 168 | eleq1d 2419 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → ((
Spac ‘ Tc (2c
↑c k)) ∈ Fin ↔ ( Spac ‘(2c
↑c Tc k)) ∈ Fin )) | 
| 170 | 168 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Nc ( Spac
‘ Tc (2c
↑c k)) = Nc ( Spac
‘(2c ↑c Tc k))) | 
| 171 | 170 | eqeq1d 2361 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) ↔ Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c))) | 
| 172 | 170 | eqeq1d 2361 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → (
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c) ↔ Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c))) | 
| 173 | 171, 172 | orbi12d 690 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → ((
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)) ↔ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))) | 
| 174 | 169, 173 | anbi12d 691 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
((( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c))) ↔ (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c))))) | 
| 175 | 174 | imbi2d 307 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) → ((
Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) ↔ ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))))) | 
| 176 | 175 | 3adant2 974 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) ↔ ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))))) | 
| 177 | 176 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) ↔ ( Nc ( Spac
‘(2c ↑c k)) = (1c +c
n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))))) | 
| 178 |   | nchoicelem7 6296 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Nc ( Spac
‘k) = ( Nc ( Spac
‘(2c ↑c k)) +c
1c)) | 
| 179 | 178 | 3adant2 974 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Nc ( Spac ‘k) = ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) | 
| 180 |   | simp2 956 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Nc ( Spac ‘k) = ((n
+c 1c) +c
1c)) | 
| 181 | 179, 180 | eqtr3d 2387 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c)) | 
| 182 | 181 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c)) | 
| 183 |   | nnnc 6147 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((n +c 1c) ∈ Nn → (n +c 1c) ∈ NC
) | 
| 184 |   | fvex 5340 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ( Spac ‘(2c
↑c k)) ∈ V | 
| 185 | 184 | ncelncsi 6122 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢  Nc ( Spac
‘(2c ↑c k)) ∈ NC | 
| 186 |   | peano4nc 6151 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (( Nc ( Spac
‘(2c ↑c k)) ∈ NC ∧ (n +c 1c) ∈ NC ) → (( Nc ( Spac
‘(2c ↑c k)) +c 1c) =
((n +c
1c) +c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) | 
| 187 | 185, 186 | mpan 651 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((n +c 1c) ∈ NC → (( Nc ( Spac
‘(2c ↑c k)) +c 1c) =
((n +c
1c) +c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) | 
| 188 | 125, 183,
187 | 3syl 18 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (n ∈ Nn → (( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) | 
| 189 | 188 | ad2antlr 707 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ((n +c 1c)
+c 1c) ↔ Nc ( Spac
‘(2c ↑c k)) = (n
+c 1c))) | 
| 190 | 182, 189 | mpbid 201 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Nc ( Spac ‘(2c
↑c k)) = (n +c
1c)) | 
| 191 |   | addccom 4407 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (n +c 1c) =
(1c +c n) | 
| 192 | 190, 191 | syl6eq 2401 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Nc ( Spac ‘(2c
↑c k)) =
(1c +c n)) | 
| 193 |   | peano2 4404 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ( Nc ( Spac
‘(2c ↑c Tc k))
∈ Nn → (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) ∈
Nn ) | 
| 194 |   | tccl 6161 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (k ∈ NC → Tc
k ∈ NC ) | 
| 195 |   | te0c 6238 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (k ∈ NC → ( Tc
k ↑c
0c) ∈ NC ) | 
| 196 |   | nchoicelem7 6296 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (( Tc k
∈ NC ∧ ( Tc
k ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) | 
| 197 | 194, 195,
196 | syl2anc 642 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (k ∈ NC → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) | 
| 198 | 197 | 3ad2ant1 976 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) | 
| 199 | 198 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Nc ( Spac ‘ Tc k) = (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c)) | 
| 200 | 199 | eleq1d 2419 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘ Tc k)
∈ Nn ↔ (
Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) ∈
Nn )) | 
| 201 | 193, 200 | syl5ibr 212 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c Tc k)) ∈ Nn → Nc ( Spac ‘ Tc k)
∈ Nn
)) | 
| 202 |   | finnc 6244 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (( Spac ‘(2c
↑c Tc k)) ∈ Fin ↔ Nc ( Spac ‘(2c
↑c Tc k)) ∈ Nn ) | 
| 203 |   | finnc 6244 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (( Spac ‘ Tc k)
∈ Fin ↔
Nc ( Spac
‘ Tc k) ∈ Nn ) | 
| 204 | 201, 202,
203 | 3imtr4g 261 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin → ( Spac ‘ Tc k)
∈ Fin
)) | 
| 205 |   | addceq1 4384 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) → ( Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) = (( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) +c
1c)) | 
| 206 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ( Nc ( Spac
‘k) = ( Nc ( Spac
‘(2c ↑c k)) +c 1c)
→ Tc Nc ( Spac
‘k) = Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) | 
| 207 | 178, 206 | syl 15 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ ((k ∈ NC ∧ (k ↑c 0c)
∈ NC ) →
Tc Nc (
Spac ‘k) = Tc (
Nc ( Spac
‘(2c ↑c k)) +c
1c)) | 
| 208 | 207 | 3adant2 974 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → Tc
Nc ( Spac
‘k) = Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) | 
| 209 | 208 | adantl 452 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Tc
Nc ( Spac
‘k) = Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c)) | 
| 210 |   | tcdi 6165 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (( Nc ( Spac
‘(2c ↑c k)) ∈ NC ∧
1c ∈ NC ) → Tc (
Nc ( Spac
‘(2c ↑c k)) +c 1c) = (
Tc Nc (
Spac ‘(2c
↑c k))
+c Tc
1c)) | 
| 211 | 185, 5, 210 | mp2an 653 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢  Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c Tc
1c) | 
| 212 | 104 | addceq2i 4388 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ( Tc Nc ( Spac ‘(2c
↑c k))
+c Tc
1c) = ( Tc Nc ( Spac
‘(2c ↑c k)) +c
1c) | 
| 213 | 211, 212 | eqtri 2373 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢  Tc ( Nc ( Spac ‘(2c
↑c k))
+c 1c) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) | 
| 214 | 209, 213 | syl6eq 2401 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → Tc
Nc ( Spac
‘k) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)) | 
| 215 | 214 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Tc Nc ( Spac ‘k) +c 1c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) +c
1c)) | 
| 216 | 199, 215 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c) ↔
( Nc ( Spac ‘(2c
↑c Tc k)) +c 1c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) +c
1c))) | 
| 217 | 205, 216 | syl5ibr 212 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 1c)
→ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
1c))) | 
| 218 |   | addceq1 4384 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c) → ( Nc ( Spac
‘(2c ↑c Tc k))
+c 1c) = (( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c) +c
1c)) | 
| 219 | 214 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Tc Nc ( Spac ‘k) +c 2c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 1c) +c
2c)) | 
| 220 |   | addc32 4417 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c) +c
2c) = (( Tc Nc ( Spac
‘(2c ↑c k)) +c 2c)
+c 1c) | 
| 221 | 219, 220 | syl6eq 2401 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Tc Nc ( Spac ‘k) +c 2c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 2c) +c
1c)) | 
| 222 | 199, 221 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 2c) ↔
( Nc ( Spac ‘(2c
↑c Tc k)) +c 1c) = ((
Tc Nc (
Spac ‘(2c
↑c k))
+c 2c) +c
1c))) | 
| 223 | 218, 222 | syl5ibr 212 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ( Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 2c)
→ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))) | 
| 224 | 217, 223 | orim12d 811 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 1c)  ∨ Nc ( Spac ‘(2c
↑c Tc k)) = ( Tc
Nc ( Spac
‘(2c ↑c k)) +c 2c))
→ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) | 
| 225 | 204, 224 | anim12d 546 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ((( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c))) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 226 | 192, 225 | embantd 50 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘(2c
↑c Tc k)) ∈ Fin ∧ ( Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘(2c ↑c Tc k)) =
( Tc Nc (
Spac ‘(2c
↑c k))
+c 2c)))) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 227 | 177, 226 | sylbid 206 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → (( Nc ( Spac ‘(2c
↑c k)) =
(1c +c n) → (( Spac ‘ Tc (2c
↑c k)) ∈ Fin ∧ ( Nc ( Spac ‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 1c)  ∨
Nc ( Spac
‘ Tc (2c
↑c k)) = ( Tc Nc ( Spac ‘(2c
↑c k))
+c 2c)))) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 228 | 166, 227 | syl5 28 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((
≤c We NC ∧ n ∈ Nn ) ∧ (k ∈ NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC )) → ((∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
∧ (2c
↑c k) ∈ NC ) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 229 | 228 | exp4b 590 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (( ≤c
We NC ∧ n ∈ Nn ) →
((k ∈
NC ∧ Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) ∧
(k ↑c
0c) ∈ NC ) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))))) | 
| 230 | 229 | com23 72 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (( ≤c
We NC ∧ n ∈ Nn ) → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ((k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC ) →
((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))))) | 
| 231 | 230 | 3impia 1148 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (( ≤c
We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ ((k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC ) →
((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))))) | 
| 232 | 231 | imp 418 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC )) →
((2c ↑c k) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 233 | 149, 232 | mpd 14 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c) ∧ (k ↑c 0c)
∈ NC )) →
(( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) | 
| 234 | 145, 233 | sylan2br 462 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ ((k
∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c)) ∧ (k ↑c 0c)
∈ NC )) →
(( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c)))) | 
| 235 | 234 | expr 598 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → ((k
↑c 0c) ∈ NC → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 236 | 144, 235 | syld 40 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → (1c <c Nc ( Spac
‘k) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 237 | 141, 236 | mpd 14 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ (k ∈ NC ∧ Nc ( Spac ‘k) = ((n
+c 1c) +c
1c))) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c)))) | 
| 238 | 237 | expr 598 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ k ∈ NC ) → ( Nc ( Spac
‘k) = ((n +c 1c)
+c 1c) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 239 | 118, 238 | syl5bi 208 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((
≤c We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
∧ k ∈ NC ) → ( Nc ( Spac
‘k) = (1c
+c (n
+c 1c)) → (( Spac ‘ Tc k)
∈ Fin ∧ ( Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c 1c)  ∨ Nc ( Spac ‘ Tc k) = (
Tc Nc (
Spac ‘k) +c
2c))))) | 
| 240 | 239 | ralrimiva 2698 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (( ≤c
We NC ∧ n ∈ Nn ∧ ∀m ∈ NC ( Nc ( Spac ‘m) = (1c +c
n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))) | 
| 241 | 240 | 3exp 1150 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ( ≤c
We NC →
(n ∈
Nn → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) | 
| 242 | 241 | com12 27 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (n ∈ Nn → ( ≤c We NC → (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) | 
| 243 | 242 | a2d 23 | 
. . . . . . . . . . . . . . . . . 18
⊢ (n ∈ Nn → (( ≤c We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c n) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))))
→ ( ≤c We NC → ∀k ∈ NC ( Nc ( Spac ‘k) = (1c +c
(n +c
1c)) → (( Spac
‘ Tc k) ∈ Fin ∧ ( Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
1c)  ∨ Nc ( Spac
‘ Tc k) = ( Tc
Nc ( Spac
‘k) +c
2c))))))) | 
| 244 | 32, 39, 44, 67, 72, 116, 243 | finds 4412 | 
. . . . . . . . . . . . . . . . 17
⊢ (x ∈ Nn → ( ≤c We NC → ∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c
2c)))))) | 
| 245 |   | fveq2 5329 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Spac ‘m) = ( Spac
‘M)) | 
| 246 | 245 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = M →
Nc ( Spac
‘m) = Nc
( Spac ‘M)) | 
| 247 | 246 | eqeq1d 2361 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (m = M → (
Nc ( Spac
‘m) = (1c
+c x) ↔ Nc ( Spac
‘M) = (1c
+c x))) | 
| 248 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M →
Tc m = Tc
M) | 
| 249 | 248 | fveq2d 5333 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Spac ‘ Tc m) = (
Spac ‘ Tc M)) | 
| 250 | 249 | eleq1d 2419 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = M → ((
Spac ‘ Tc m)
∈ Fin ↔ (
Spac ‘ Tc M)
∈ Fin
)) | 
| 251 | 249 | nceqd 6111 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M →
Nc ( Spac
‘ Tc m) = Nc ( Spac ‘ Tc M)) | 
| 252 |   | tceq 6159 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ( Nc ( Spac
‘m) = Nc
( Spac ‘M) → Tc
Nc ( Spac
‘m) = Tc Nc ( Spac ‘M)) | 
| 253 | 246, 252 | syl 15 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = M →
Tc Nc (
Spac ‘m) = Tc
Nc ( Spac
‘M)) | 
| 254 | 253 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M → (
Tc Nc (
Spac ‘m) +c 1c) = (
Tc Nc (
Spac ‘M) +c
1c)) | 
| 255 | 251, 254 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c) ↔ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
1c))) | 
| 256 | 253 | addceq1d 4390 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (m = M → (
Tc Nc (
Spac ‘m) +c 2c) = (
Tc Nc (
Spac ‘M) +c
2c)) | 
| 257 | 251, 256 | eqeq12d 2367 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (m = M → (
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c) ↔ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))) | 
| 258 | 255, 257 | orbi12d 690 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (m = M → ((
Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
1c)  ∨ Nc ( Spac
‘ Tc m) = ( Tc
Nc ( Spac
‘m) +c
2c)) ↔ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))) | 
| 259 | 250, 258 | anbi12d 691 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (m = M → (((
Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c)))
↔ (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) | 
| 260 | 247, 259 | imbi12d 311 | 
. . . . . . . . . . . . . . . . . 18
⊢ (m = M → ((
Nc ( Spac
‘m) = (1c
+c x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
↔ ( Nc ( Spac ‘M) = (1c +c
x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 261 | 260 | rspccv 2953 | 
. . . . . . . . . . . . . . . . 17
⊢ (∀m ∈ NC ( Nc ( Spac
‘m) = (1c
+c x) → (( Spac ‘ Tc m)
∈ Fin ∧ ( Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 1c)  ∨ Nc ( Spac ‘ Tc m) = (
Tc Nc (
Spac ‘m) +c 2c))))
→ (M ∈ NC → ( Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 262 | 244, 261 | syl6com 31 | 
. . . . . . . . . . . . . . . 16
⊢ ( ≤c
We NC →
(x ∈
Nn → (M
∈ NC → (
Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))))) | 
| 263 | 262 | com23 72 | 
. . . . . . . . . . . . . . 15
⊢ ( ≤c
We NC →
(M ∈
NC → (x
∈ Nn → (
Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))))) | 
| 264 | 263 | imp 418 | 
. . . . . . . . . . . . . 14
⊢ (( ≤c
We NC ∧ M ∈ NC ) →
(x ∈
Nn → ( Nc (
Spac ‘M) = (1c +c
x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 265 | 264 | adantr 451 | 
. . . . . . . . . . . . 13
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (x ∈ Nn → ( Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 266 | 265 | adantr 451 | 
. . . . . . . . . . . 12
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (x ∈ Nn → ( Nc ( Spac
‘M) = (1c
+c x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 267 | 27, 31, 266 | 3syld 51 | 
. . . . . . . . . . 11
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (t =
(1c +c x) → ( Nc ( Spac ‘M) = (1c +c
x) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 268 | 267 | imp3a 420 | 
. . . . . . . . . 10
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → ((t =
(1c +c x) ∧ Nc ( Spac
‘M) = (1c
+c x)) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) | 
| 269 | 15, 268 | syl5 28 | 
. . . . . . . . 9
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → (( Nc ( Spac ‘M) = (1c +c
x) ∧
t = Nc ( Spac ‘M)) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) | 
| 270 | 269 | exp3a 425 | 
. . . . . . . 8
⊢ ((((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) ∧ x ∈ NC ) → ( Nc ( Spac ‘M) = (1c +c
x) → (t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 271 | 270 | rexlimdva 2739 | 
. . . . . . 7
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (∃x ∈ NC Nc ( Spac
‘M) = (1c
+c x) → (t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 272 | 9, 271 | syl5bi 208 | 
. . . . . 6
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (1c ≤c Nc ( Spac
‘M) → (t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))))) | 
| 273 | 4, 272 | mpd 14 | 
. . . . 5
⊢ (((
≤c We NC ∧ M ∈ NC ) ∧ t ∈ Nn ) → (t =
Nc ( Spac
‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) | 
| 274 | 273 | rexlimdva 2739 | 
. . . 4
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (∃t ∈ Nn t = Nc ( Spac ‘M) → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) | 
| 275 | 2, 274 | syl5bi 208 | 
. . 3
⊢ (( ≤c
We NC ∧ M ∈ NC ) → ( Nc ( Spac
‘M) ∈ Nn → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) | 
| 276 | 1, 275 | syl5bi 208 | 
. 2
⊢ (( ≤c
We NC ∧ M ∈ NC ) → (( Spac ‘M) ∈ Fin → (( Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c))))) | 
| 277 | 276 | 3impia 1148 | 
1
⊢ (( ≤c
We NC ∧ M ∈ NC ∧ ( Spac
‘M) ∈ Fin ) → ((
Spac ‘ Tc M)
∈ Fin ∧ ( Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c 1c)  ∨ Nc ( Spac ‘ Tc M) = (
Tc Nc (
Spac ‘M) +c
2c)))) |