New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpanl1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ φ |
mpanl1.2 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((ψ ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ φ | |
2 | 1 | jctl 525 | . 2 ⊢ (ψ → (φ ∧ ψ)) |
3 | mpanl1.2 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
4 | 2, 3 | sylan 457 | 1 ⊢ ((ψ ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpanl12 663 |
Copyright terms: Public domain | W3C validator |