| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mp3an13 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ φ |
| mp3an13.2 | ⊢ χ |
| mp3an13.3 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (ψ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ φ | |
| 2 | mp3an13.2 | . . 3 ⊢ χ | |
| 3 | mp3an13.3 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
| 4 | 2, 3 | mp3an3 1266 | . 2 ⊢ ((φ ∧ ψ) → θ) |
| 5 | 1, 4 | mpan 651 | 1 ⊢ (ψ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: sfinltfin 4536 nmembers1lem2 6270 |
| Copyright terms: Public domain | W3C validator |