New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mp3an12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mp3an12.1 | ⊢ φ |
mp3an12.2 | ⊢ ψ |
mp3an12.3 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
mp3an12 | ⊢ (χ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an12.2 | . 2 ⊢ ψ | |
2 | mp3an12.1 | . . 3 ⊢ φ | |
3 | mp3an12.3 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
4 | 2, 3 | mp3an1 1264 | . 2 ⊢ ((ψ ∧ χ) → θ) |
5 | 1, 4 | mpan 651 | 1 ⊢ (χ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: ceqsralv 2887 opkelopkabg 4246 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 vfin1cltv 4548 vfinspss 4552 fvfullfunlem3 5864 fvfullfun 5865 clos1nrel 5887 cenc 6182 nclec 6196 nc0le1 6217 nclenc 6223 |
Copyright terms: Public domain | W3C validator |