NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mp3an12 GIF version

Theorem mp3an12 1267
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.)
Hypotheses
Ref Expression
mp3an12.1 φ
mp3an12.2 ψ
mp3an12.3 ((φ ψ χ) → θ)
Assertion
Ref Expression
mp3an12 (χθ)

Proof of Theorem mp3an12
StepHypRef Expression
1 mp3an12.2 . 2 ψ
2 mp3an12.1 . . 3 φ
3 mp3an12.3 . . 3 ((φ ψ χ) → θ)
42, 3mp3an1 1264 . 2 ((ψ χ) → θ)
51, 4mpan 651 1 (χθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  ceqsralv  2887  opkelopkabg  4246  otkelins2kg  4254  otkelins3kg  4255  opkelcokg  4262  vfin1cltv  4548  vfinspss  4552  fvfullfunlem3  5864  fvfullfun  5865  clos1nrel  5887  cenc  6182  nclec  6196  nc0le1  6217  nclenc  6223
  Copyright terms: Public domain W3C validator