NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mp3an3 GIF version

Theorem mp3an3 1266
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
mp3an3.1 χ
mp3an3.2 ((φ ψ χ) → θ)
Assertion
Ref Expression
mp3an3 ((φ ψ) → θ)

Proof of Theorem mp3an3
StepHypRef Expression
1 mp3an3.1 . 2 χ
2 mp3an3.2 . . 3 ((φ ψ χ) → θ)
323expia 1153 . 2 ((φ ψ) → (χθ))
41, 3mpi 16 1 ((φ ψ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  mp3an13  1268  mp3an23  1269  mp3anl3  1273  vfinnc  4472  ov  5596  ovmpt2a  5715  ovmpt2  5717  enmap1lem5  6074  ltcpw1pwg  6203  nnltp1c  6263  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator