NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  biimp3a GIF version

Theorem biimp3a 1281
Description: Infer implication from a logical equivalence. Similar to biimpa 470. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
biimp3a.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
biimp3a ((φ ψ χ) → θ)

Proof of Theorem biimp3a
StepHypRef Expression
1 biimp3a.1 . . 3 ((φ ψ) → (χθ))
21biimpa 470 . 2 (((φ ψ) χ) → θ)
323impa 1146 1 ((φ ψ χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator