| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mp3an2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ ψ |
| mp3an2.2 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((φ ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ ψ | |
| 2 | mp3an2.2 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
| 3 | 2 | 3expa 1151 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
| 4 | 1, 3 | mpanl2 662 | 1 ⊢ ((φ ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: mp3anl2 1272 oddtfin 4519 vfinncsp 4555 |
| Copyright terms: Public domain | W3C validator |