New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpanl12 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ φ |
mpanl12.2 | ⊢ ψ |
mpanl12.3 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (χ → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ ψ | |
2 | mpanl12.1 | . . 3 ⊢ φ | |
3 | mpanl12.3 | . . 3 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
4 | 2, 3 | mpanl1 661 | . 2 ⊢ ((ψ ∧ χ) → θ) |
5 | 1, 4 | mpan 651 | 1 ⊢ (χ → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: reuun1 3538 funprg 5150 mucnc 6132 |
Copyright terms: Public domain | W3C validator |