| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpanl2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanl2.1 | ⊢ ψ |
| mpanl2.2 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| mpanl2 | ⊢ ((φ ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl2.1 | . . 3 ⊢ ψ | |
| 2 | 1 | jctr 526 | . 2 ⊢ (φ → (φ ∧ ψ)) |
| 3 | mpanl2.2 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
| 4 | 2, 3 | sylan 457 | 1 ⊢ ((φ ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: mpanr1 664 mp3an2 1265 reuss 3537 vfinncsp 4555 |
| Copyright terms: Public domain | W3C validator |