| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mp2and | GIF version | ||
| Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| mp2and.1 | ⊢ (φ → ψ) |
| mp2and.2 | ⊢ (φ → χ) |
| mp2and.3 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
| Ref | Expression |
|---|---|
| mp2and | ⊢ (φ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2and.2 | . 2 ⊢ (φ → χ) | |
| 2 | mp2and.1 | . . 3 ⊢ (φ → ψ) | |
| 3 | mp2and.3 | . . 3 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
| 4 | 2, 3 | mpand 656 | . 2 ⊢ (φ → (χ → θ)) |
| 5 | 1, 4 | mpd 14 | 1 ⊢ (φ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: ssnelpssd 3615 nnsucelr 4429 sfinltfin 4536 vfinncvntnn 4549 trd 5922 frd 5923 antid 5930 |
| Copyright terms: Public domain | W3C validator |