NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mp2and GIF version

Theorem mp2and 660
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.)
Hypotheses
Ref Expression
mp2and.1 (φψ)
mp2and.2 (φχ)
mp2and.3 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
mp2and (φθ)

Proof of Theorem mp2and
StepHypRef Expression
1 mp2and.2 . 2 (φχ)
2 mp2and.1 . . 3 (φψ)
3 mp2and.3 . . 3 (φ → ((ψ χ) → θ))
42, 3mpand 656 . 2 (φ → (χθ))
51, 4mpd 14 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ssnelpssd  3615  nnsucelr  4429  sfinltfin  4536  vfinncvntnn  4549  trd  5922  frd  5923  antid  5930
  Copyright terms: Public domain W3C validator