New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mucnc | GIF version |
Description: Cardinal multiplication in terms of cardinality. Theorem XI.2.27 of [Rosser] p. 378. (Contributed by SF, 10-Mar-2015.) |
Ref | Expression |
---|---|
mucnc.1 | ⊢ A ∈ V |
mucnc.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
mucnc | ⊢ ( Nc A ·c Nc B) = Nc (A × B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mucnc.1 | . . . 4 ⊢ A ∈ V | |
2 | 1 | ncelncsi 6122 | . . 3 ⊢ Nc A ∈ NC |
3 | mucnc.2 | . . . 4 ⊢ B ∈ V | |
4 | 3 | ncelncsi 6122 | . . 3 ⊢ Nc B ∈ NC |
5 | ovmuc 6131 | . . 3 ⊢ (( Nc A ∈ NC ∧ Nc B ∈ NC ) → ( Nc A ·c Nc B) = {x ∣ ∃y ∈ Nc A∃z ∈ Nc Bx ≈ (y × z)}) | |
6 | 2, 4, 5 | mp2an 653 | . 2 ⊢ ( Nc A ·c Nc B) = {x ∣ ∃y ∈ Nc A∃z ∈ Nc Bx ≈ (y × z)} |
7 | df-nc 6102 | . . 3 ⊢ Nc (A × B) = [(A × B)] ≈ | |
8 | dfec2 5949 | . . 3 ⊢ [(A × B)] ≈ = {x ∣ (A × B) ≈ x} | |
9 | elnc 6126 | . . . . . . . 8 ⊢ (y ∈ Nc A ↔ y ≈ A) | |
10 | elnc 6126 | . . . . . . . 8 ⊢ (z ∈ Nc B ↔ z ≈ B) | |
11 | 9, 10 | anbi12i 678 | . . . . . . 7 ⊢ ((y ∈ Nc A ∧ z ∈ Nc B) ↔ (y ≈ A ∧ z ≈ B)) |
12 | ensym 6038 | . . . . . . 7 ⊢ (x ≈ (y × z) ↔ (y × z) ≈ x) | |
13 | 11, 12 | anbi12i 678 | . . . . . 6 ⊢ (((y ∈ Nc A ∧ z ∈ Nc B) ∧ x ≈ (y × z)) ↔ ((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x)) |
14 | 13 | 2exbii 1583 | . . . . 5 ⊢ (∃y∃z((y ∈ Nc A ∧ z ∈ Nc B) ∧ x ≈ (y × z)) ↔ ∃y∃z((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x)) |
15 | r2ex 2653 | . . . . 5 ⊢ (∃y ∈ Nc A∃z ∈ Nc Bx ≈ (y × z) ↔ ∃y∃z((y ∈ Nc A ∧ z ∈ Nc B) ∧ x ≈ (y × z))) | |
16 | 1 | enrflx 6036 | . . . . . . 7 ⊢ A ≈ A |
17 | 3 | enrflx 6036 | . . . . . . 7 ⊢ B ≈ B |
18 | breq1 4643 | . . . . . . . . . 10 ⊢ (y = A → (y ≈ A ↔ A ≈ A)) | |
19 | breq1 4643 | . . . . . . . . . 10 ⊢ (z = B → (z ≈ B ↔ B ≈ B)) | |
20 | 18, 19 | bi2anan9 843 | . . . . . . . . 9 ⊢ ((y = A ∧ z = B) → ((y ≈ A ∧ z ≈ B) ↔ (A ≈ A ∧ B ≈ B))) |
21 | xpeq12 4804 | . . . . . . . . . 10 ⊢ ((y = A ∧ z = B) → (y × z) = (A × B)) | |
22 | 21 | breq1d 4650 | . . . . . . . . 9 ⊢ ((y = A ∧ z = B) → ((y × z) ≈ x ↔ (A × B) ≈ x)) |
23 | 20, 22 | anbi12d 691 | . . . . . . . 8 ⊢ ((y = A ∧ z = B) → (((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x) ↔ ((A ≈ A ∧ B ≈ B) ∧ (A × B) ≈ x))) |
24 | 1, 3, 23 | spc2ev 2948 | . . . . . . 7 ⊢ (((A ≈ A ∧ B ≈ B) ∧ (A × B) ≈ x) → ∃y∃z((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x)) |
25 | 16, 17, 24 | mpanl12 663 | . . . . . 6 ⊢ ((A × B) ≈ x → ∃y∃z((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x)) |
26 | xpen 6056 | . . . . . . . . 9 ⊢ ((y ≈ A ∧ z ≈ B) → (y × z) ≈ (A × B)) | |
27 | ensym 6038 | . . . . . . . . 9 ⊢ ((y × z) ≈ (A × B) ↔ (A × B) ≈ (y × z)) | |
28 | 26, 27 | sylib 188 | . . . . . . . 8 ⊢ ((y ≈ A ∧ z ≈ B) → (A × B) ≈ (y × z)) |
29 | entr 6039 | . . . . . . . 8 ⊢ (((A × B) ≈ (y × z) ∧ (y × z) ≈ x) → (A × B) ≈ x) | |
30 | 28, 29 | sylan 457 | . . . . . . 7 ⊢ (((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x) → (A × B) ≈ x) |
31 | 30 | exlimivv 1635 | . . . . . 6 ⊢ (∃y∃z((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x) → (A × B) ≈ x) |
32 | 25, 31 | impbii 180 | . . . . 5 ⊢ ((A × B) ≈ x ↔ ∃y∃z((y ≈ A ∧ z ≈ B) ∧ (y × z) ≈ x)) |
33 | 14, 15, 32 | 3bitr4ri 269 | . . . 4 ⊢ ((A × B) ≈ x ↔ ∃y ∈ Nc A∃z ∈ Nc Bx ≈ (y × z)) |
34 | 33 | abbii 2466 | . . 3 ⊢ {x ∣ (A × B) ≈ x} = {x ∣ ∃y ∈ Nc A∃z ∈ Nc Bx ≈ (y × z)} |
35 | 7, 8, 34 | 3eqtrri 2378 | . 2 ⊢ {x ∣ ∃y ∈ Nc A∃z ∈ Nc Bx ≈ (y × z)} = Nc (A × B) |
36 | 6, 35 | eqtri 2373 | 1 ⊢ ( Nc A ·c Nc B) = Nc (A × B) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 Vcvv 2860 class class class wbr 4640 × cxp 4771 (class class class)co 5526 [cec 5946 ≈ cen 6029 NC cncs 6089 Nc cnc 6092 ·c cmuc 6093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-pprod 5739 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-cross 5765 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 df-muc 6103 |
This theorem is referenced by: muccl 6133 muccom 6135 mucass 6136 muc0 6143 mucid1 6144 addcdi 6251 muc0or 6253 |
Copyright terms: Public domain | W3C validator |