NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  funprg GIF version

Theorem funprg 5150
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.) (Revised by Scott Fenton, 16-Apr-2021.)
Assertion
Ref Expression
funprg ((AB C V D W) → Fun {A, C, B, D})

Proof of Theorem funprg
StepHypRef Expression
1 dmsnopg 5067 . . . . . 6 (C V → dom {A, C} = {A})
213ad2ant2 977 . . . . 5 ((AB C V D W) → dom {A, C} = {A})
3 dmsnopg 5067 . . . . . 6 (D W → dom {B, D} = {B})
433ad2ant3 978 . . . . 5 ((AB C V D W) → dom {B, D} = {B})
52, 4ineq12d 3459 . . . 4 ((AB C V D W) → (dom {A, C} ∩ dom {B, D}) = ({A} ∩ {B}))
6 disjsn2 3788 . . . . 5 (AB → ({A} ∩ {B}) = )
763ad2ant1 976 . . . 4 ((AB C V D W) → ({A} ∩ {B}) = )
85, 7eqtrd 2385 . . 3 ((AB C V D W) → (dom {A, C} ∩ dom {B, D}) = )
9 funsn 5148 . . . 4 Fun {A, C}
10 funsn 5148 . . . 4 Fun {B, D}
11 funun 5147 . . . 4 (((Fun {A, C} Fun {B, D}) (dom {A, C} ∩ dom {B, D}) = ) → Fun ({A, C} ∪ {B, D}))
129, 10, 11mpanl12 663 . . 3 ((dom {A, C} ∩ dom {B, D}) = → Fun ({A, C} ∪ {B, D}))
138, 12syl 15 . 2 ((AB C V D W) → Fun ({A, C} ∪ {B, D}))
14 df-pr 3743 . . 3 {A, C, B, D} = ({A, C} ∪ {B, D})
1514funeqi 5129 . 2 (Fun {A, C, B, D} ↔ Fun ({A, C} ∪ {B, D}))
1613, 15sylibr 203 1 ((AB C V D W) → Fun {A, C, B, D})
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934   = wceq 1642   wcel 1710  wne 2517  cun 3208  cin 3209  c0 3551  {csn 3738  {cpr 3739  cop 4562  dom cdm 4773  Fun wfun 4776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790
This theorem is referenced by:  funpr  5152
  Copyright terms: Public domain W3C validator