| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nannan | GIF version | ||
| Description: Lemma for handling nested 'nand's. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
| Ref | Expression |
|---|---|
| nannan | ⊢ ((φ ⊼ (χ ⊼ ψ)) ↔ (φ → (χ ∧ ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nan 1288 | . . 3 ⊢ ((φ ⊼ (χ ⊼ ψ)) ↔ ¬ (φ ∧ (χ ⊼ ψ))) | |
| 2 | df-nan 1288 | . . . 4 ⊢ ((χ ⊼ ψ) ↔ ¬ (χ ∧ ψ)) | |
| 3 | 2 | anbi2i 675 | . . 3 ⊢ ((φ ∧ (χ ⊼ ψ)) ↔ (φ ∧ ¬ (χ ∧ ψ))) |
| 4 | 1, 3 | xchbinx 301 | . 2 ⊢ ((φ ⊼ (χ ⊼ ψ)) ↔ ¬ (φ ∧ ¬ (χ ∧ ψ))) |
| 5 | iman 413 | . 2 ⊢ ((φ → (χ ∧ ψ)) ↔ ¬ (φ ∧ ¬ (χ ∧ ψ))) | |
| 6 | 4, 5 | bitr4i 243 | 1 ⊢ ((φ ⊼ (χ ⊼ ψ)) ↔ (φ → (χ ∧ ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ⊼ wnan 1287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-nan 1288 |
| This theorem is referenced by: nanim 1292 nic-mp 1436 nic-ax 1438 |
| Copyright terms: Public domain | W3C validator |