NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nbi2 GIF version

Theorem nbi2 862
Description: Two ways to express "exclusive or." (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Jan-2013.)
Assertion
Ref Expression
nbi2 (¬ (φψ) ↔ ((φ ψ) ¬ (φ ψ)))

Proof of Theorem nbi2
StepHypRef Expression
1 xor3 346 . 2 (¬ (φψ) ↔ (φ ↔ ¬ ψ))
2 pm5.17 858 . 2 (((φ ψ) ¬ (φ ψ)) ↔ (φ ↔ ¬ ψ))
31, 2bitr4i 243 1 (¬ (φψ) ↔ ((φ ψ) ¬ (φ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  xor2  1310
  Copyright terms: Public domain W3C validator