| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm5.17 | GIF version | ||
| Description: Theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.17 | ⊢ (((φ ∨ ψ) ∧ ¬ (φ ∧ ψ)) ↔ (φ ↔ ¬ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bicom 191 | . 2 ⊢ ((φ ↔ ¬ ψ) ↔ (¬ ψ ↔ φ)) | |
| 2 | dfbi2 609 | . 2 ⊢ ((¬ ψ ↔ φ) ↔ ((¬ ψ → φ) ∧ (φ → ¬ ψ))) | |
| 3 | orcom 376 | . . . 4 ⊢ ((φ ∨ ψ) ↔ (ψ ∨ φ)) | |
| 4 | df-or 359 | . . . 4 ⊢ ((ψ ∨ φ) ↔ (¬ ψ → φ)) | |
| 5 | 3, 4 | bitr2i 241 | . . 3 ⊢ ((¬ ψ → φ) ↔ (φ ∨ ψ)) | 
| 6 | imnan 411 | . . 3 ⊢ ((φ → ¬ ψ) ↔ ¬ (φ ∧ ψ)) | |
| 7 | 5, 6 | anbi12i 678 | . 2 ⊢ (((¬ ψ → φ) ∧ (φ → ¬ ψ)) ↔ ((φ ∨ ψ) ∧ ¬ (φ ∧ ψ))) | 
| 8 | 1, 2, 7 | 3bitrri 263 | 1 ⊢ (((φ ∨ ψ) ∧ ¬ (φ ∧ ψ)) ↔ (φ ↔ ¬ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: nbi2 862 | 
| Copyright terms: Public domain | W3C validator |