NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necomi GIF version

Theorem necomi 2598
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
Hypothesis
Ref Expression
necomi.1 AB
Assertion
Ref Expression
necomi BA

Proof of Theorem necomi
StepHypRef Expression
1 necomi.1 . 2 AB
2 necom 2597 . 2 (ABBA)
31, 2mpbi 199 1 BA
Colors of variables: wff setvar class
Syntax hints:  wne 2516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-cleq 2346  df-ne 2518
This theorem is referenced by:  necompl  3544  ltfinirr  4457  evenodddisj  4516  nfunv  5138  nnltp1c  6262
  Copyright terms: Public domain W3C validator