| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > necomi | GIF version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 | ⊢ A ≠ B |
| Ref | Expression |
|---|---|
| necomi | ⊢ B ≠ A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 | . 2 ⊢ A ≠ B | |
| 2 | necom 2598 | . 2 ⊢ (A ≠ B ↔ B ≠ A) | |
| 3 | 1, 2 | mpbi 199 | 1 ⊢ B ≠ A |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-cleq 2346 df-ne 2519 |
| This theorem is referenced by: necompl 3545 ltfinirr 4458 evenodddisj 4517 nfunv 5139 nnltp1c 6263 |
| Copyright terms: Public domain | W3C validator |