NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fvclss GIF version

Theorem fvclss 5463
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
Assertion
Ref Expression
fvclss {y x y = (Fx)} (ran F ∪ {})
Distinct variable group:   x,y,F

Proof of Theorem fvclss
StepHypRef Expression
1 eqcom 2355 . . . . . . . . . 10 (y = (Fx) ↔ (Fx) = y)
2 tz6.12i 5349 . . . . . . . . . 10 (y → ((Fx) = yxFy))
31, 2syl5bi 208 . . . . . . . . 9 (y → (y = (Fx) → xFy))
43eximdv 1622 . . . . . . . 8 (y → (x y = (Fx) → x xFy))
54com12 27 . . . . . . 7 (x y = (Fx) → (yx xFy))
6 elrn 4897 . . . . . . 7 (y ran Fx xFy)
75, 6syl6ibr 218 . . . . . 6 (x y = (Fx) → (yy ran F))
87necon1bd 2585 . . . . 5 (x y = (Fx) → (¬ y ran Fy = ))
9 vex 2863 . . . . . 6 y V
109elsnc 3757 . . . . 5 (y {} ↔ y = )
118, 10syl6ibr 218 . . . 4 (x y = (Fx) → (¬ y ran Fy {}))
1211orrd 367 . . 3 (x y = (Fx) → (y ran F y {}))
13 elun 3221 . . 3 (y (ran F ∪ {}) ↔ (y ran F y {}))
1412, 13sylibr 203 . 2 (x y = (Fx) → y (ran F ∪ {}))
1514abssi 3342 1 {y x y = (Fx)} (ran F ∪ {})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wne 2517  cun 3208   wss 3258  c0 3551  {csn 3738   class class class wbr 4640  ran crn 4774  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-br 4641  df-ima 4728  df-rn 4787  df-fv 4796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator