New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvclss | GIF version |
Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.) |
Ref | Expression |
---|---|
fvclss | ⊢ {y ∣ ∃x y = (F ‘x)} ⊆ (ran F ∪ {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2355 | . . . . . . . . . 10 ⊢ (y = (F ‘x) ↔ (F ‘x) = y) | |
2 | tz6.12i 5349 | . . . . . . . . . 10 ⊢ (y ≠ ∅ → ((F ‘x) = y → xFy)) | |
3 | 1, 2 | syl5bi 208 | . . . . . . . . 9 ⊢ (y ≠ ∅ → (y = (F ‘x) → xFy)) |
4 | 3 | eximdv 1622 | . . . . . . . 8 ⊢ (y ≠ ∅ → (∃x y = (F ‘x) → ∃x xFy)) |
5 | 4 | com12 27 | . . . . . . 7 ⊢ (∃x y = (F ‘x) → (y ≠ ∅ → ∃x xFy)) |
6 | elrn 4897 | . . . . . . 7 ⊢ (y ∈ ran F ↔ ∃x xFy) | |
7 | 5, 6 | syl6ibr 218 | . . . . . 6 ⊢ (∃x y = (F ‘x) → (y ≠ ∅ → y ∈ ran F)) |
8 | 7 | necon1bd 2585 | . . . . 5 ⊢ (∃x y = (F ‘x) → (¬ y ∈ ran F → y = ∅)) |
9 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
10 | 9 | elsnc 3757 | . . . . 5 ⊢ (y ∈ {∅} ↔ y = ∅) |
11 | 8, 10 | syl6ibr 218 | . . . 4 ⊢ (∃x y = (F ‘x) → (¬ y ∈ ran F → y ∈ {∅})) |
12 | 11 | orrd 367 | . . 3 ⊢ (∃x y = (F ‘x) → (y ∈ ran F ∨ y ∈ {∅})) |
13 | elun 3221 | . . 3 ⊢ (y ∈ (ran F ∪ {∅}) ↔ (y ∈ ran F ∨ y ∈ {∅})) | |
14 | 12, 13 | sylibr 203 | . 2 ⊢ (∃x y = (F ‘x) → y ∈ (ran F ∪ {∅})) |
15 | 14 | abssi 3342 | 1 ⊢ {y ∣ ∃x y = (F ‘x)} ⊆ (ran F ∪ {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ≠ wne 2517 ∪ cun 3208 ⊆ wss 3258 ∅c0 3551 {csn 3738 class class class wbr 4640 ran crn 4774 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-br 4641 df-ima 4728 df-rn 4787 df-fv 4796 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |