NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6ib GIF version

Theorem syl6ib 217
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl6ib.1 (φ → (ψχ))
syl6ib.2 (χθ)
Assertion
Ref Expression
syl6ib (φ → (ψθ))

Proof of Theorem syl6ib
StepHypRef Expression
1 syl6ib.1 . 2 (φ → (ψχ))
2 syl6ib.2 . . 3 (χθ)
32biimpi 186 . 2 (χθ)
41, 3syl6 29 1 (φ → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3imtr3g  260  exp4a  589  mtord  641  19.23hOLD  1820  ax12olem6  1932  cbvexd  2009  ax15  2021  2eu3  2286  exists2  2294  necon2bd  2566  necon2d  2567  necon4ad  2578  necon4d  2580  necon1bd  2585  spcimgft  2931  eqsbc2  3104  reupick  3540  evenodddisj  4517  sfinltfin  4536  vfin1cltv  4548  dmcosseq  4974  iss  5001  xp11  5057  ssrnres  5060  opelf  5236  mapsn  6027
  Copyright terms: Public domain W3C validator