New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > necon3bbid | GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 | ⊢ (φ → (ψ ↔ A = B)) |
Ref | Expression |
---|---|
necon3bbid | ⊢ (φ → (¬ ψ ↔ A ≠ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 ⊢ (φ → (ψ ↔ A = B)) | |
2 | 1 | bicomd 192 | . . 3 ⊢ (φ → (A = B ↔ ψ)) |
3 | 2 | necon3abid 2549 | . 2 ⊢ (φ → (A ≠ B ↔ ¬ ψ)) |
4 | 3 | bicomd 192 | 1 ⊢ (φ → (¬ ψ ↔ A ≠ B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 = wceq 1642 ≠ wne 2516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-ne 2518 |
This theorem is referenced by: necon3bid 2551 eldifsn 3839 brltc 6114 addceq0 6219 |
Copyright terms: Public domain | W3C validator |