NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon3bbid GIF version

Theorem necon3bbid 2550
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.)
Hypothesis
Ref Expression
necon3bbid.1 (φ → (ψA = B))
Assertion
Ref Expression
necon3bbid (φ → (¬ ψAB))

Proof of Theorem necon3bbid
StepHypRef Expression
1 necon3bbid.1 . . . 4 (φ → (ψA = B))
21bicomd 192 . . 3 (φ → (A = Bψ))
32necon3abid 2549 . 2 (φ → (AB ↔ ¬ ψ))
43bicomd 192 1 (φ → (¬ ψAB))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   = wceq 1642  wne 2516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2518
This theorem is referenced by:  necon3bid  2551  eldifsn  3839  brltc  6114  addceq0  6219
  Copyright terms: Public domain W3C validator