NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addceq0 GIF version

Theorem addceq0 6220
Description: The sum of two cardinals is zero iff both addends are zero. (Contributed by SF, 12-Mar-2015.)
Assertion
Ref Expression
addceq0 ((A NC B NC ) → ((A +c B) = 0c ↔ (A = 0c B = 0c)))

Proof of Theorem addceq0
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 ianor 474 . . . 4 (¬ (A = 0c B = 0c) ↔ (¬ A = 0c ¬ B = 0c))
2 nc0suc 6218 . . . . . . . 8 (A NC → (A = 0c p NC A = (p +c 1c)))
32ord 366 . . . . . . 7 (A NC → (¬ A = 0cp NC A = (p +c 1c)))
43adantr 451 . . . . . 6 ((A NC B NC ) → (¬ A = 0cp NC A = (p +c 1c)))
5 addc32 4417 . . . . . . . . 9 ((p +c 1c) +c B) = ((p +c B) +c 1c)
6 0cnsuc 4402 . . . . . . . . 9 ((p +c B) +c 1c) ≠ 0c
75, 6eqnetri 2534 . . . . . . . 8 ((p +c 1c) +c B) ≠ 0c
8 addceq1 4384 . . . . . . . . . 10 (A = (p +c 1c) → (A +c B) = ((p +c 1c) +c B))
98eqeq1d 2361 . . . . . . . . 9 (A = (p +c 1c) → ((A +c B) = 0c ↔ ((p +c 1c) +c B) = 0c))
109necon3bbid 2551 . . . . . . . 8 (A = (p +c 1c) → (¬ (A +c B) = 0c ↔ ((p +c 1c) +c B) ≠ 0c))
117, 10mpbiri 224 . . . . . . 7 (A = (p +c 1c) → ¬ (A +c B) = 0c)
1211rexlimivw 2735 . . . . . 6 (p NC A = (p +c 1c) → ¬ (A +c B) = 0c)
134, 12syl6 29 . . . . 5 ((A NC B NC ) → (¬ A = 0c → ¬ (A +c B) = 0c))
14 nc0suc 6218 . . . . . . . 8 (B NC → (B = 0c p NC B = (p +c 1c)))
1514ord 366 . . . . . . 7 (B NC → (¬ B = 0cp NC B = (p +c 1c)))
1615adantl 452 . . . . . 6 ((A NC B NC ) → (¬ B = 0cp NC B = (p +c 1c)))
17 addcass 4416 . . . . . . . . 9 ((A +c p) +c 1c) = (A +c (p +c 1c))
18 0cnsuc 4402 . . . . . . . . 9 ((A +c p) +c 1c) ≠ 0c
1917, 18eqnetrri 2536 . . . . . . . 8 (A +c (p +c 1c)) ≠ 0c
20 addceq2 4385 . . . . . . . . . 10 (B = (p +c 1c) → (A +c B) = (A +c (p +c 1c)))
2120eqeq1d 2361 . . . . . . . . 9 (B = (p +c 1c) → ((A +c B) = 0c ↔ (A +c (p +c 1c)) = 0c))
2221necon3bbid 2551 . . . . . . . 8 (B = (p +c 1c) → (¬ (A +c B) = 0c ↔ (A +c (p +c 1c)) ≠ 0c))
2319, 22mpbiri 224 . . . . . . 7 (B = (p +c 1c) → ¬ (A +c B) = 0c)
2423rexlimivw 2735 . . . . . 6 (p NC B = (p +c 1c) → ¬ (A +c B) = 0c)
2516, 24syl6 29 . . . . 5 ((A NC B NC ) → (¬ B = 0c → ¬ (A +c B) = 0c))
2613, 25jaod 369 . . . 4 ((A NC B NC ) → ((¬ A = 0c ¬ B = 0c) → ¬ (A +c B) = 0c))
271, 26syl5bi 208 . . 3 ((A NC B NC ) → (¬ (A = 0c B = 0c) → ¬ (A +c B) = 0c))
2827con4d 97 . 2 ((A NC B NC ) → ((A +c B) = 0c → (A = 0c B = 0c)))
29 addceq12 4386 . . 3 ((A = 0c B = 0c) → (A +c B) = (0c +c 0c))
30 addcid2 4408 . . 3 (0c +c 0c) = 0c
3129, 30syl6eq 2401 . 2 ((A = 0c B = 0c) → (A +c B) = 0c)
3228, 31impbid1 194 1 ((A NC B NC ) → ((A +c B) = 0c ↔ (A = 0c B = 0c)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358   = wceq 1642   wcel 1710  wne 2517  wrex 2616  1cc1c 4135  0cc0c 4375   +c cplc 4376   NC cncs 6089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-lec 6100  df-nc 6102
This theorem is referenced by:  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator