NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eldifsn GIF version

Theorem eldifsn 3840
Description: Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
eldifsn (A (B {C}) ↔ (A B AC))

Proof of Theorem eldifsn
StepHypRef Expression
1 eldif 3222 . 2 (A (B {C}) ↔ (A B ¬ A {C}))
2 elsncg 3756 . . . 4 (A B → (A {C} ↔ A = C))
32necon3bbid 2551 . . 3 (A B → (¬ A {C} ↔ AC))
43pm5.32i 618 . 2 ((A B ¬ A {C}) ↔ (A B AC))
51, 4bitri 240 1 (A (B {C}) ↔ (A B AC))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358   wcel 1710  wne 2517   cdif 3207  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-sn 3742
This theorem is referenced by:  eldifsni  3841  rexdifsn  3844  difsn  3846  nnsucelrlem2  4426  evenfinex  4504  oddfinex  4505  evenoddnnnul  4515  vfinspnn  4542  vfinspsslem1  4551  vinf  4556  enadjlem1  6060  2p1e3c  6157
  Copyright terms: Public domain W3C validator