NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon3bd GIF version

Theorem necon3bd 2554
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3bd.1 (φ → (A = Bψ))
Assertion
Ref Expression
necon3bd (φ → (¬ ψAB))

Proof of Theorem necon3bd
StepHypRef Expression
1 nne 2521 . . 3 ABA = B)
2 necon3bd.1 . . 3 (φ → (A = Bψ))
31, 2syl5bi 208 . 2 (φ → (¬ ABψ))
43con1d 116 1 (φ → (¬ ψAB))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  nelne1  2606  nelne2  2607  nssne1  3328  nssne2  3329  disjne  3597  difsn  3846  nbrne1  4657  nbrne2  4658
  Copyright terms: Public domain W3C validator