New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difsn | GIF version |
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difsn | ⊢ (¬ A ∈ B → (B ∖ {A}) = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 3840 | . . 3 ⊢ (x ∈ (B ∖ {A}) ↔ (x ∈ B ∧ x ≠ A)) | |
2 | simpl 443 | . . . 4 ⊢ ((x ∈ B ∧ x ≠ A) → x ∈ B) | |
3 | eleq1 2413 | . . . . . . . 8 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
4 | 3 | biimpcd 215 | . . . . . . 7 ⊢ (x ∈ B → (x = A → A ∈ B)) |
5 | 4 | necon3bd 2554 | . . . . . 6 ⊢ (x ∈ B → (¬ A ∈ B → x ≠ A)) |
6 | 5 | com12 27 | . . . . 5 ⊢ (¬ A ∈ B → (x ∈ B → x ≠ A)) |
7 | 6 | ancld 536 | . . . 4 ⊢ (¬ A ∈ B → (x ∈ B → (x ∈ B ∧ x ≠ A))) |
8 | 2, 7 | impbid2 195 | . . 3 ⊢ (¬ A ∈ B → ((x ∈ B ∧ x ≠ A) ↔ x ∈ B)) |
9 | 1, 8 | syl5bb 248 | . 2 ⊢ (¬ A ∈ B → (x ∈ (B ∖ {A}) ↔ x ∈ B)) |
10 | 9 | eqrdv 2351 | 1 ⊢ (¬ A ∈ B → (B ∖ {A}) = B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∖ cdif 3207 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-sn 3742 |
This theorem is referenced by: difsnb 3851 adj11 3890 nnsucelrlem3 4427 nnsucelr 4429 ssfin 4471 |
Copyright terms: Public domain | W3C validator |