NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon3ad GIF version

Theorem necon3ad 2552
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon3ad.1 (φ → (ψA = B))
Assertion
Ref Expression
necon3ad (φ → (AB → ¬ ψ))

Proof of Theorem necon3ad
StepHypRef Expression
1 necon3ad.1 . . 3 (φ → (ψA = B))
2 nne 2520 . . 3 ABA = B)
31, 2syl6ibr 218 . 2 (φ → (ψ → ¬ AB))
43con2d 107 1 (φ → (AB → ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2518
This theorem is referenced by:  necon3d  2554  disjpss  3601  sfinltfin  4535  nchoicelem8  6296
  Copyright terms: Public domain W3C validator