New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nssne2 | GIF version |
Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
nssne2 | ⊢ ((A ⊆ C ∧ ¬ B ⊆ C) → A ≠ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3292 | . . . 4 ⊢ (A = B → (A ⊆ C ↔ B ⊆ C)) | |
2 | 1 | biimpcd 215 | . . 3 ⊢ (A ⊆ C → (A = B → B ⊆ C)) |
3 | 2 | necon3bd 2553 | . 2 ⊢ (A ⊆ C → (¬ B ⊆ C → A ≠ B)) |
4 | 3 | imp 418 | 1 ⊢ ((A ⊆ C ∧ ¬ B ⊆ C) → A ≠ B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ≠ wne 2516 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |