New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5bb | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bb.1 | ⊢ (φ ↔ ψ) |
syl5bb.2 | ⊢ (χ → (ψ ↔ θ)) |
Ref | Expression |
---|---|
syl5bb | ⊢ (χ → (φ ↔ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bb.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | a1i 10 | . 2 ⊢ (χ → (φ ↔ ψ)) |
3 | syl5bb.2 | . 2 ⊢ (χ → (ψ ↔ θ)) | |
4 | 2, 3 | bitrd 244 | 1 ⊢ (χ → (φ ↔ θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: syl5rbb 249 syl5bbr 250 3bitr4g 279 imim21b 356 cad0 1400 had1 1402 ax11wdemo 1723 ax12olem6 1932 sbcom 2089 abbi 2464 necon3abid 2550 necon3bid 2552 necon1abid 2570 r19.21t 2700 ceqsralt 2883 ceqsrexv 2973 ceqsrex2v 2975 elab2g 2988 elrabf 2994 eueq2 3011 eqreu 3029 reu8 3033 ru 3046 sbcralt 3119 sbcabel 3124 csbnestgf 3185 elcomplg 3219 disjpss 3602 ralprg 3776 rexprg 3777 difsn 3846 ralunsn 3880 dfiin2g 4001 iunxsng 4045 elpwuni 4054 eluni1g 4173 opkelopkabg 4246 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 opkelimagekg 4272 nnsucelrlem2 4426 ltfinirr 4458 sfin01 4529 addccan1 4561 copsex4g 4611 opelopabt 4700 opelopabga 4701 brabga 4702 dfid3 4769 opeliunxp 4821 resieq 4980 fncnv 5159 fununi 5161 fnssresb 5196 dffn5 5364 funimass4 5369 fniniseg 5372 fnsnfv 5374 dmfco 5382 fvimacnvi 5403 unpreima 5409 respreima 5411 dffo4 5424 fressnfv 5440 funiunfv 5468 dff13 5472 isomin 5497 isoini 5498 f1oiso 5500 fnopovb 5558 eloprabga 5579 resoprab2 5583 ov 5596 ovg 5602 fmpt2x 5731 txpcofun 5804 brcrossg 5849 mapsn 6027 enprmaplem5 6081 nenpw1pwlem2 6086 brltc 6115 elnc 6126 ncdisjun 6137 ce0nulnc 6185 ltlenlec 6208 ncfin 6248 nnc3n3p1 6279 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |