NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neeq12d GIF version

Theorem neeq12d 2532
Description: Deduction for inequality. (Contributed by NM, 24-Jul-2012.)
Hypotheses
Ref Expression
neeq1d.1 (φA = B)
neeq12d.2 (φC = D)
Assertion
Ref Expression
neeq12d (φ → (ACBD))

Proof of Theorem neeq12d
StepHypRef Expression
1 neeq1d.1 . . 3 (φA = B)
21neeq1d 2530 . 2 (φ → (ACBC))
3 neeq12d.2 . . 3 (φC = D)
43neeq2d 2531 . 2 (φ → (BCBD))
52, 4bitrd 244 1 (φ → (ACBD))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by:  3netr3d  2543  3netr4d  2544
  Copyright terms: Public domain W3C validator