New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > neeq12d | GIF version |
Description: Deduction for inequality. (Contributed by NM, 24-Jul-2012.) |
Ref | Expression |
---|---|
neeq1d.1 | ⊢ (φ → A = B) |
neeq12d.2 | ⊢ (φ → C = D) |
Ref | Expression |
---|---|
neeq12d | ⊢ (φ → (A ≠ C ↔ B ≠ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1d.1 | . . 3 ⊢ (φ → A = B) | |
2 | 1 | neeq1d 2529 | . 2 ⊢ (φ → (A ≠ C ↔ B ≠ C)) |
3 | neeq12d.2 | . . 3 ⊢ (φ → C = D) | |
4 | 3 | neeq2d 2530 | . 2 ⊢ (φ → (B ≠ C ↔ B ≠ D)) |
5 | 2, 4 | bitrd 244 | 1 ⊢ (φ → (A ≠ C ↔ B ≠ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ≠ wne 2516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 df-ne 2518 |
This theorem is referenced by: 3netr3d 2542 3netr4d 2543 |
Copyright terms: Public domain | W3C validator |