NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neeq1d GIF version

Theorem neeq1d 2530
Description: Deduction for inequality. (Contributed by NM, 25-Oct-1999.)
Hypothesis
Ref Expression
neeq1d.1 (φA = B)
Assertion
Ref Expression
neeq1d (φ → (ACBC))

Proof of Theorem neeq1d
StepHypRef Expression
1 neeq1d.1 . 2 (φA = B)
2 neeq1 2525 . 2 (A = B → (ACBC))
31, 2syl 15 1 (φ → (ACBC))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346  df-ne 2519
This theorem is referenced by:  neeq12d  2532  eqnetrd  2535  prnzg  3837  preaddccan2lem1  4455  preaddccan2  4456  evenodddisj  4517  vfinncvntnn  4549  ereldm  5972  map0  6026  ce0addcnnul  6180  ce0nn  6181  ce0nnulb  6183
  Copyright terms: Public domain W3C validator