New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > albid | GIF version |
Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎxφ |
albid.2 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
albid | ⊢ (φ → (∀xψ ↔ ∀xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎxφ | |
2 | 1 | nfri 1762 | . 2 ⊢ (φ → ∀xφ) |
3 | albid.2 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
4 | 2, 3 | albidh 1590 | 1 ⊢ (φ → (∀xψ ↔ ∀xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfbidf 1774 ax11v2 1992 sbcom 2089 sbal2 2134 ax11eq 2193 ax11el 2194 ax11v2-o 2201 eubid 2211 ralbida 2629 raleqf 2804 intab 3957 |
Copyright terms: Public domain | W3C validator |