| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > albid | GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎxφ |
| albid.2 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| albid | ⊢ (φ → (∀xψ ↔ ∀xχ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | 1 | nfri 1762 | . 2 ⊢ (φ → ∀xφ) |
| 3 | albid.2 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
| 4 | 2, 3 | albidh 1590 | 1 ⊢ (φ → (∀xψ ↔ ∀xχ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nfbidf 1774 ax11v2 1992 sbcom 2089 sbal2 2134 ax11eq 2193 ax11el 2194 ax11v2-o 2201 eubid 2211 ralbida 2629 raleqf 2804 intab 3957 |
| Copyright terms: Public domain | W3C validator |