New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nf4 | GIF version |
Description: Variable x is effectively not free in φ iff φ is always true or always false. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf4 | ⊢ (Ⅎxφ ↔ (∀xφ ∨ ∀x ¬ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf2 1866 | . 2 ⊢ (Ⅎxφ ↔ (∃xφ → ∀xφ)) | |
2 | imor 401 | . 2 ⊢ ((∃xφ → ∀xφ) ↔ (¬ ∃xφ ∨ ∀xφ)) | |
3 | orcom 376 | . . 3 ⊢ ((¬ ∃xφ ∨ ∀xφ) ↔ (∀xφ ∨ ¬ ∃xφ)) | |
4 | alnex 1543 | . . . 4 ⊢ (∀x ¬ φ ↔ ¬ ∃xφ) | |
5 | 4 | orbi2i 505 | . . 3 ⊢ ((∀xφ ∨ ∀x ¬ φ) ↔ (∀xφ ∨ ¬ ∃xφ)) |
6 | 3, 5 | bitr4i 243 | . 2 ⊢ ((¬ ∃xφ ∨ ∀xφ) ↔ (∀xφ ∨ ∀x ¬ φ)) |
7 | 1, 2, 6 | 3bitri 262 | 1 ⊢ (Ⅎxφ ↔ (∀xφ ∨ ∀x ¬ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-or 359 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |