| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nf2 | GIF version | ||
| Description: An alternative definition of df-nf 1545, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nf2 | ⊢ (Ⅎxφ ↔ (∃xφ → ∀xφ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1545 | . 2 ⊢ (Ⅎxφ ↔ ∀x(φ → ∀xφ)) | |
| 2 | nfa1 1788 | . . 3 ⊢ Ⅎx∀xφ | |
| 3 | 2 | 19.23 1801 | . 2 ⊢ (∀x(φ → ∀xφ) ↔ (∃xφ → ∀xφ)) |
| 4 | 1, 3 | bitri 240 | 1 ⊢ (Ⅎxφ ↔ (∃xφ → ∀xφ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nf3 1867 nf4 1868 |
| Copyright terms: Public domain | W3C validator |