New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfif | GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎxφ |
nfif.2 | ⊢ ℲxA |
nfif.3 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎx if(φ, A, B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
3 | nfif.2 | . . . 4 ⊢ ℲxA | |
4 | 3 | a1i 10 | . . 3 ⊢ ( ⊤ → ℲxA) |
5 | nfif.3 | . . . 4 ⊢ ℲxB | |
6 | 5 | a1i 10 | . . 3 ⊢ ( ⊤ → ℲxB) |
7 | 2, 4, 6 | nfifd 3686 | . 2 ⊢ ( ⊤ → Ⅎx if(φ, A, B)) |
8 | 7 | trud 1323 | 1 ⊢ Ⅎx if(φ, A, B) |
Colors of variables: wff setvar class |
Syntax hints: ⊤ wtru 1316 Ⅎwnf 1544 Ⅎwnfc 2477 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-if 3664 |
This theorem is referenced by: csbifg 3691 |
Copyright terms: Public domain | W3C validator |