NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifeq1da GIF version

Theorem ifeq1da 3688
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((φ ψ) → A = B)
Assertion
Ref Expression
ifeq1da (φ → if(ψ, A, C) = if(ψ, B, C))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((φ ψ) → A = B)
21ifeq1d 3677 . 2 ((φ ψ) → if(ψ, A, C) = if(ψ, B, C))
3 iffalse 3670 . . . 4 ψ → if(ψ, A, C) = C)
4 iffalse 3670 . . . 4 ψ → if(ψ, B, C) = C)
53, 4eqtr4d 2388 . . 3 ψ → if(ψ, A, C) = if(ψ, B, C))
65adantl 452 . 2 ((φ ¬ ψ) → if(ψ, A, C) = if(ψ, B, C))
72, 6pm2.61dan 766 1 (φ → if(ψ, A, C) = if(ψ, B, C))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   = wceq 1642   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-if 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator