New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfifd | GIF version |
Description: Deduction version of nfif 3687. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfifd.2 | ⊢ (φ → Ⅎxψ) |
nfifd.3 | ⊢ (φ → ℲxA) |
nfifd.4 | ⊢ (φ → ℲxB) |
Ref | Expression |
---|---|
nfifd | ⊢ (φ → Ⅎx if(ψ, A, B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif2 3665 | . 2 ⊢ if(ψ, A, B) = {y ∣ ((y ∈ B → ψ) → (y ∈ A ∧ ψ))} | |
2 | nfv 1619 | . . 3 ⊢ Ⅎyφ | |
3 | nfifd.4 | . . . . . 6 ⊢ (φ → ℲxB) | |
4 | 3 | nfcrd 2503 | . . . . 5 ⊢ (φ → Ⅎx y ∈ B) |
5 | nfifd.2 | . . . . 5 ⊢ (φ → Ⅎxψ) | |
6 | 4, 5 | nfimd 1808 | . . . 4 ⊢ (φ → Ⅎx(y ∈ B → ψ)) |
7 | nfifd.3 | . . . . . 6 ⊢ (φ → ℲxA) | |
8 | 7 | nfcrd 2503 | . . . . 5 ⊢ (φ → Ⅎx y ∈ A) |
9 | 8, 5 | nfand 1822 | . . . 4 ⊢ (φ → Ⅎx(y ∈ A ∧ ψ)) |
10 | 6, 9 | nfimd 1808 | . . 3 ⊢ (φ → Ⅎx((y ∈ B → ψ) → (y ∈ A ∧ ψ))) |
11 | 2, 10 | nfabd 2509 | . 2 ⊢ (φ → Ⅎx{y ∣ ((y ∈ B → ψ) → (y ∈ A ∧ ψ))}) |
12 | 1, 11 | nfcxfrd 2488 | 1 ⊢ (φ → Ⅎx if(ψ, A, B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 Ⅎwnf 1544 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-if 3664 |
This theorem is referenced by: nfif 3687 |
Copyright terms: Public domain | W3C validator |