NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfim1 GIF version

Theorem nfim1 1811
Description: A closed form of nfim 1813. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
Hypotheses
Ref Expression
nfim1.1 xφ
nfim1.2 (φ → Ⅎxψ)
Assertion
Ref Expression
nfim1 x(φψ)

Proof of Theorem nfim1
StepHypRef Expression
1 nfim1.1 . . . 4 xφ
21nfri 1762 . . 3 (φxφ)
3 nfim1.2 . . . 4 (φ → Ⅎxψ)
43nfrd 1763 . . 3 (φ → (ψxψ))
52, 4hbim1 1810 . 2 ((φψ) → x(φψ))
65nfi 1551 1 x(φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfim  1813  sbco2d  2087
  Copyright terms: Public domain W3C validator