| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfim1OLD | GIF version | ||
| Description: A closed form of nfim 1813. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfim1.1 | ⊢ Ⅎxφ |
| nfim1.2 | ⊢ (φ → Ⅎxψ) |
| Ref | Expression |
|---|---|
| nfim1OLD | ⊢ Ⅎx(φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim1.2 | . . . . 5 ⊢ (φ → Ⅎxψ) | |
| 2 | 1 | nfrd 1763 | . . . 4 ⊢ (φ → (ψ → ∀xψ)) |
| 3 | 2 | a2i 12 | . . 3 ⊢ ((φ → ψ) → (φ → ∀xψ)) |
| 4 | nfim1.1 | . . . 4 ⊢ Ⅎxφ | |
| 5 | 4 | 19.21 1796 | . . 3 ⊢ (∀x(φ → ψ) ↔ (φ → ∀xψ)) |
| 6 | 3, 5 | sylibr 203 | . 2 ⊢ ((φ → ψ) → ∀x(φ → ψ)) |
| 7 | 6 | nfi 1551 | 1 ⊢ Ⅎx(φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |