NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hbim1 GIF version

Theorem hbim1 1810
Description: A closed form of hbim 1817. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
hbim1.1 (φxφ)
hbim1.2 (φ → (ψxψ))
Assertion
Ref Expression
hbim1 ((φψ) → x(φψ))

Proof of Theorem hbim1
StepHypRef Expression
1 hbim1.2 . . 3 (φ → (ψxψ))
21a2i 12 . 2 ((φψ) → (φxψ))
3 hbim1.1 . . 3 (φxφ)
4319.21h 1797 . 2 (x(φψ) ↔ (φxψ))
52, 4sylibr 203 1 ((φψ) → x(φψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfim1  1811  hbim  1817  ax12olem6  1932  ax15  2021
  Copyright terms: Public domain W3C validator