New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbim1 | GIF version |
Description: A closed form of hbim 1817. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbim1.1 | ⊢ (φ → ∀xφ) |
hbim1.2 | ⊢ (φ → (ψ → ∀xψ)) |
Ref | Expression |
---|---|
hbim1 | ⊢ ((φ → ψ) → ∀x(φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbim1.2 | . . 3 ⊢ (φ → (ψ → ∀xψ)) | |
2 | 1 | a2i 12 | . 2 ⊢ ((φ → ψ) → (φ → ∀xψ)) |
3 | hbim1.1 | . . 3 ⊢ (φ → ∀xφ) | |
4 | 3 | 19.21h 1797 | . 2 ⊢ (∀x(φ → ψ) ↔ (φ → ∀xψ)) |
5 | 2, 4 | sylibr 203 | 1 ⊢ ((φ → ψ) → ∀x(φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfim1 1811 hbim 1817 ax12olem6 1932 ax15 2021 |
Copyright terms: Public domain | W3C validator |