| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbco2d | GIF version | ||
| Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbco2d.1 | ⊢ Ⅎxφ |
| sbco2d.2 | ⊢ Ⅎzφ |
| sbco2d.3 | ⊢ (φ → Ⅎzψ) |
| Ref | Expression |
|---|---|
| sbco2d | ⊢ (φ → ([y / z][z / x]ψ ↔ [y / x]ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2d.2 | . . . . 5 ⊢ Ⅎzφ | |
| 2 | sbco2d.3 | . . . . 5 ⊢ (φ → Ⅎzψ) | |
| 3 | 1, 2 | nfim1 1811 | . . . 4 ⊢ Ⅎz(φ → ψ) |
| 4 | 3 | sbco2 2086 | . . 3 ⊢ ([y / z][z / x](φ → ψ) ↔ [y / x](φ → ψ)) |
| 5 | sbco2d.1 | . . . . . 6 ⊢ Ⅎxφ | |
| 6 | 5 | sbrim 2067 | . . . . 5 ⊢ ([z / x](φ → ψ) ↔ (φ → [z / x]ψ)) |
| 7 | 6 | sbbii 1653 | . . . 4 ⊢ ([y / z][z / x](φ → ψ) ↔ [y / z](φ → [z / x]ψ)) |
| 8 | 1 | sbrim 2067 | . . . 4 ⊢ ([y / z](φ → [z / x]ψ) ↔ (φ → [y / z][z / x]ψ)) |
| 9 | 7, 8 | bitri 240 | . . 3 ⊢ ([y / z][z / x](φ → ψ) ↔ (φ → [y / z][z / x]ψ)) |
| 10 | 5 | sbrim 2067 | . . 3 ⊢ ([y / x](φ → ψ) ↔ (φ → [y / x]ψ)) |
| 11 | 4, 9, 10 | 3bitr3i 266 | . 2 ⊢ ((φ → [y / z][z / x]ψ) ↔ (φ → [y / x]ψ)) |
| 12 | 11 | pm5.74ri 237 | 1 ⊢ (φ → ([y / z][z / x]ψ ↔ [y / x]ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbco3 2088 |
| Copyright terms: Public domain | W3C validator |