New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.21 | GIF version |
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as "x is not free in φ." (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
19.21.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
19.21 | ⊢ (∀x(φ → ψ) ↔ (φ → ∀xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21.1 | . 2 ⊢ Ⅎxφ | |
2 | 19.21t 1795 | . 2 ⊢ (Ⅎxφ → (∀x(φ → ψ) ↔ (φ → ∀xψ))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀x(φ → ψ) ↔ (φ → ∀xψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.21h 1797 stdpc5 1798 nfim1OLD 1812 19.21-2 1864 nf3 1867 19.32 1875 19.21v 1890 19.12vv 1898 ax15 2021 eu2 2229 moanim 2260 r2alf 2650 |
Copyright terms: Public domain | W3C validator |