NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfnfc GIF version

Theorem nfnfc 2496
Description: Hypothesis builder for yA. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfnfc.1 xA
Assertion
Ref Expression
nfnfc xyA

Proof of Theorem nfnfc
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2479 . 2 (yAzy z A)
2 nfnfc.1 . . . . 5 xA
32nfcri 2484 . . . 4 x z A
43nfnf 1845 . . 3 xy z A
54nfal 1842 . 2 xzy z A
61, 5nfxfr 1570 1 xyA
Colors of variables: wff setvar class
Syntax hints:  wal 1540  wnf 1544   wcel 1710  wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator