New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfnfc | GIF version |
Description: Hypothesis builder for ℲyA. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 | ⊢ ℲxA |
Ref | Expression |
---|---|
nfnfc | ⊢ ℲxℲyA |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2478 | . 2 ⊢ (ℲyA ↔ ∀zℲy z ∈ A) | |
2 | nfnfc.1 | . . . . 5 ⊢ ℲxA | |
3 | 2 | nfcri 2483 | . . . 4 ⊢ Ⅎx z ∈ A |
4 | 3 | nfnf 1845 | . . 3 ⊢ ℲxℲy z ∈ A |
5 | 4 | nfal 1842 | . 2 ⊢ Ⅎx∀zℲy z ∈ A |
6 | 1, 5 | nfxfr 1570 | 1 ⊢ ℲxℲyA |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 Ⅎwnfc 2476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |