| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm3.24 | GIF version | ||
| Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| pm3.24 | ⊢ ¬ (φ ∧ ¬ φ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (φ → φ) | |
| 2 | iman 413 | . 2 ⊢ ((φ → φ) ↔ ¬ (φ ∧ ¬ φ)) | |
| 3 | 1, 2 | mpbi 199 | 1 ⊢ ¬ (φ ∧ ¬ φ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: pm4.43 893 nonconne 2524 pssirr 3370 indifdir 3512 dfnul2 3553 dfnul3 3554 rabnc 3575 nincompl 4073 imadif 5172 | 
| Copyright terms: Public domain | W3C validator |