NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm3.24 GIF version

Theorem pm3.24 852
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Assertion
Ref Expression
pm3.24 ¬ (φ ¬ φ)

Proof of Theorem pm3.24
StepHypRef Expression
1 id 19 . 2 (φφ)
2 iman 413 . 2 ((φφ) ↔ ¬ (φ ¬ φ))
31, 2mpbi 199 1 ¬ (φ ¬ φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  pm4.43  893  nonconne  2524  pssirr  3370  indifdir  3512  dfnul2  3553  dfnul3  3554  rabnc  3575  nincompl  4073  imadif  5172
  Copyright terms: Public domain W3C validator