New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > neeq1 | GIF version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq1 | ⊢ (A = B → (A ≠ C ↔ B ≠ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . 3 ⊢ (A = B → (A = C ↔ B = C)) | |
2 | 1 | notbid 285 | . 2 ⊢ (A = B → (¬ A = C ↔ ¬ B = C)) |
3 | df-ne 2519 | . 2 ⊢ (A ≠ C ↔ ¬ A = C) | |
4 | df-ne 2519 | . 2 ⊢ (B ≠ C ↔ ¬ B = C) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (A = B → (A ≠ C ↔ B ≠ C)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 df-ne 2519 |
This theorem is referenced by: neeq1i 2527 neeq1d 2530 psseq1 3357 opkltfing 4450 ltfintri 4467 tfin11 4494 0ceven 4506 evennn 4507 oddnn 4508 evennnul 4509 oddnnul 4510 sucevenodd 4511 sucoddeven 4512 dfevenfin2 4513 dfoddfin2 4514 evenoddnnnul 4515 evenodddisjlem1 4516 eventfin 4518 oddtfin 4519 nulnnn 4557 xp11 5057 tz6.12i 5349 frd 5923 elqsn0 5994 enprmapc 6084 ce2 6193 nchoicelem14 6303 |
Copyright terms: Public domain | W3C validator |