Proof of Theorem dvelimv
Step | Hyp | Ref
| Expression |
1 | | ax-17 1616 |
. . . . . 6
⊢ (ψ → ∀zψ) |
2 | 1 | a1d 22 |
. . . . . 6
⊢ (ψ → (z = y →
∀zψ)) |
3 | 1, 2 | alrimih 1565 |
. . . . 5
⊢ (ψ → ∀z(z = y →
∀zψ)) |
4 | | sp 1747 |
. . . . . . . 8
⊢ (∀zψ → ψ) |
5 | | dvelimv.1 |
. . . . . . . 8
⊢ (z = y →
(φ ↔ ψ)) |
6 | 4, 5 | syl5ibr 212 |
. . . . . . 7
⊢ (z = y →
(∀zψ →
φ)) |
7 | 6 | a2i 12 |
. . . . . 6
⊢ ((z = y →
∀zψ) → (z = y →
φ)) |
8 | 7 | alimi 1559 |
. . . . 5
⊢ (∀z(z = y →
∀zψ) → ∀z(z = y →
φ)) |
9 | 3, 8 | syl 15 |
. . . 4
⊢ (ψ → ∀z(z = y →
φ)) |
10 | | ax10lem3 1938 |
. . . . . . . 8
⊢ (∀z z = x →
∀x
x = z) |
11 | 10 | con3i 127 |
. . . . . . 7
⊢ (¬ ∀x x = z →
¬ ∀z z = x) |
12 | | hbn1 1730 |
. . . . . . . 8
⊢ (¬ ∀z z = x →
∀z
¬ ∀z z = x) |
13 | | ax10lem3 1938 |
. . . . . . . . 9
⊢ (∀x x = z →
∀z
z = x) |
14 | 13 | con3i 127 |
. . . . . . . 8
⊢ (¬ ∀z z = x →
¬ ∀x x = z) |
15 | 12, 14 | alrimih 1565 |
. . . . . . 7
⊢ (¬ ∀z z = x →
∀z
¬ ∀x x = z) |
16 | 11, 15 | syl 15 |
. . . . . 6
⊢ (¬ ∀x x = z →
∀z
¬ ∀x x = z) |
17 | | ax-17 1616 |
. . . . . 6
⊢ (¬ ∀x x = y →
∀z
¬ ∀x x = y) |
18 | 16, 17 | hban 1828 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
∀z(¬ ∀x x = z ∧ ¬ ∀x x = y)) |
19 | | hbn1 1730 |
. . . . . . 7
⊢ (¬ ∀x x = z →
∀x
¬ ∀x x = z) |
20 | | hbn1 1730 |
. . . . . . 7
⊢ (¬ ∀x x = y →
∀x
¬ ∀x x = y) |
21 | 19, 20 | hban 1828 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
∀x(¬ ∀x x = z ∧ ¬ ∀x x = y)) |
22 | | ax12o 1934 |
. . . . . . 7
⊢ (¬ ∀x x = z →
(¬ ∀x x = y → (z =
y → ∀x z = y))) |
23 | 22 | imp 418 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(z = y
→ ∀x z = y)) |
24 | | a17d 1617 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(φ → ∀xφ)) |
25 | 21, 23, 24 | hbimd 1815 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
((z = y
→ φ) → ∀x(z = y →
φ))) |
26 | 18, 25 | hbald 1740 |
. . . 4
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(∀z(z = y → φ)
→ ∀x∀z(z = y → φ))) |
27 | 5 | biimpd 198 |
. . . . . . . . 9
⊢ (z = y →
(φ → ψ)) |
28 | 27 | a2i 12 |
. . . . . . . 8
⊢ ((z = y →
φ) → (z = y →
ψ)) |
29 | 28 | alimi 1559 |
. . . . . . 7
⊢ (∀z(z = y →
φ) → ∀z(z = y →
ψ)) |
30 | | ax9v 1655 |
. . . . . . . 8
⊢ ¬ ∀z ¬
z = y |
31 | | con3 126 |
. . . . . . . . 9
⊢ ((z = y →
ψ) → (¬ ψ → ¬ z = y)) |
32 | 31 | al2imi 1561 |
. . . . . . . 8
⊢ (∀z(z = y →
ψ) → (∀z ¬
ψ → ∀z ¬
z = y)) |
33 | 30, 32 | mtoi 169 |
. . . . . . 7
⊢ (∀z(z = y →
ψ) → ¬ ∀z ¬
ψ) |
34 | 29, 33 | syl 15 |
. . . . . 6
⊢ (∀z(z = y →
φ) → ¬ ∀z ¬
ψ) |
35 | | ax-17 1616 |
. . . . . 6
⊢ (¬ ψ → ∀z ¬
ψ) |
36 | 34, 35 | nsyl2 119 |
. . . . 5
⊢ (∀z(z = y →
φ) → ψ) |
37 | 36 | alimi 1559 |
. . . 4
⊢ (∀x∀z(z = y →
φ) → ∀xψ) |
38 | 9, 26, 37 | syl56 30 |
. . 3
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(ψ → ∀xψ)) |
39 | 38 | expcom 424 |
. 2
⊢ (¬ ∀x x = y →
(¬ ∀x x = z → (ψ
→ ∀xψ))) |
40 | | sp 1747 |
. . . 4
⊢ (∀x x = z →
x = z) |
41 | | ax-11 1746 |
. . . 4
⊢ (x = z →
(∀zψ →
∀x(x = z → ψ))) |
42 | 40, 1, 41 | syl2im 34 |
. . 3
⊢ (∀x x = z →
(ψ → ∀x(x = z →
ψ))) |
43 | | pm2.27 35 |
. . . 4
⊢ (x = z →
((x = z
→ ψ) → ψ)) |
44 | 43 | al2imi 1561 |
. . 3
⊢ (∀x x = z →
(∀x(x = z → ψ)
→ ∀xψ)) |
45 | 42, 44 | syld 40 |
. 2
⊢ (∀x x = z →
(ψ → ∀xψ)) |
46 | 39, 45 | pm2.61d2 152 |
1
⊢ (¬ ∀x x = y →
(ψ → ∀xψ)) |