| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > or32 | GIF version | ||
| Description: A rearrangement of disjuncts. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| or32 | ⊢ (((φ ∨ ψ) ∨ χ) ↔ ((φ ∨ χ) ∨ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orass 510 | . 2 ⊢ (((φ ∨ ψ) ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) | |
| 2 | or12 509 | . 2 ⊢ ((φ ∨ (ψ ∨ χ)) ↔ (ψ ∨ (φ ∨ χ))) | |
| 3 | orcom 376 | . 2 ⊢ ((ψ ∨ (φ ∨ χ)) ↔ ((φ ∨ χ) ∨ ψ)) | |
| 4 | 1, 2, 3 | 3bitri 262 | 1 ⊢ (((φ ∨ ψ) ∨ χ) ↔ ((φ ∨ χ) ∨ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: sspsstri 3372 sfin111 4537 |
| Copyright terms: Public domain | W3C validator |