New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orass | GIF version |
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
orass | ⊢ (((φ ∨ ψ) ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 376 | . 2 ⊢ (((φ ∨ ψ) ∨ χ) ↔ (χ ∨ (φ ∨ ψ))) | |
2 | or12 509 | . 2 ⊢ ((χ ∨ (φ ∨ ψ)) ↔ (φ ∨ (χ ∨ ψ))) | |
3 | orcom 376 | . . 3 ⊢ ((χ ∨ ψ) ↔ (ψ ∨ χ)) | |
4 | 3 | orbi2i 505 | . 2 ⊢ ((φ ∨ (χ ∨ ψ)) ↔ (φ ∨ (ψ ∨ χ))) |
5 | 1, 2, 4 | 3bitri 262 | 1 ⊢ (((φ ∨ ψ) ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: pm2.31 511 pm2.32 512 or32 513 or4 514 3orass 937 axi12 2333 unass 3421 |
Copyright terms: Public domain | W3C validator |