New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sspsstri | GIF version |
Description: Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
sspsstri | ⊢ ((A ⊆ B ∨ B ⊆ A) ↔ (A ⊊ B ∨ A = B ∨ B ⊊ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or32 513 | . 2 ⊢ (((A ⊊ B ∨ B ⊊ A) ∨ A = B) ↔ ((A ⊊ B ∨ A = B) ∨ B ⊊ A)) | |
2 | sspss 3368 | . . . 4 ⊢ (A ⊆ B ↔ (A ⊊ B ∨ A = B)) | |
3 | sspss 3368 | . . . . 5 ⊢ (B ⊆ A ↔ (B ⊊ A ∨ B = A)) | |
4 | eqcom 2355 | . . . . . 6 ⊢ (B = A ↔ A = B) | |
5 | 4 | orbi2i 505 | . . . . 5 ⊢ ((B ⊊ A ∨ B = A) ↔ (B ⊊ A ∨ A = B)) |
6 | 3, 5 | bitri 240 | . . . 4 ⊢ (B ⊆ A ↔ (B ⊊ A ∨ A = B)) |
7 | 2, 6 | orbi12i 507 | . . 3 ⊢ ((A ⊆ B ∨ B ⊆ A) ↔ ((A ⊊ B ∨ A = B) ∨ (B ⊊ A ∨ A = B))) |
8 | orordir 517 | . . 3 ⊢ (((A ⊊ B ∨ B ⊊ A) ∨ A = B) ↔ ((A ⊊ B ∨ A = B) ∨ (B ⊊ A ∨ A = B))) | |
9 | 7, 8 | bitr4i 243 | . 2 ⊢ ((A ⊆ B ∨ B ⊆ A) ↔ ((A ⊊ B ∨ B ⊊ A) ∨ A = B)) |
10 | df-3or 935 | . 2 ⊢ ((A ⊊ B ∨ A = B ∨ B ⊊ A) ↔ ((A ⊊ B ∨ A = B) ∨ B ⊊ A)) | |
11 | 1, 9, 10 | 3bitr4i 268 | 1 ⊢ ((A ⊆ B ∨ B ⊆ A) ↔ (A ⊊ B ∨ A = B ∨ B ⊊ A)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∨ w3o 933 = wceq 1642 ⊆ wss 3257 ⊊ wpss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-pss 3261 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |