New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orddi | GIF version |
Description: Double distributive law for disjunction. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
orddi | ⊢ (((φ ∧ ψ) ∨ (χ ∧ θ)) ↔ (((φ ∨ χ) ∧ (φ ∨ θ)) ∧ ((ψ ∨ χ) ∧ (ψ ∨ θ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordir 835 | . 2 ⊢ (((φ ∧ ψ) ∨ (χ ∧ θ)) ↔ ((φ ∨ (χ ∧ θ)) ∧ (ψ ∨ (χ ∧ θ)))) | |
2 | ordi 834 | . . 3 ⊢ ((φ ∨ (χ ∧ θ)) ↔ ((φ ∨ χ) ∧ (φ ∨ θ))) | |
3 | ordi 834 | . . 3 ⊢ ((ψ ∨ (χ ∧ θ)) ↔ ((ψ ∨ χ) ∧ (ψ ∨ θ))) | |
4 | 2, 3 | anbi12i 678 | . 2 ⊢ (((φ ∨ (χ ∧ θ)) ∧ (ψ ∨ (χ ∧ θ))) ↔ (((φ ∨ χ) ∧ (φ ∨ θ)) ∧ ((ψ ∨ χ) ∧ (ψ ∨ θ)))) |
5 | 1, 4 | bitri 240 | 1 ⊢ (((φ ∧ ψ) ∨ (χ ∧ θ)) ↔ (((φ ∨ χ) ∧ (φ ∨ θ)) ∧ ((ψ ∨ χ) ∧ (ψ ∨ θ)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |